0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimising the zebrafish Cre/Lox toolbox. Codon improved iCre, new gateway tools, Cre protein and guidelines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng–10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs.

          Transgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site-specific recombination-based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]-[coding sequence]-[3' tag] constructs in a Tol2 transposon backbone. It includes a destination vector with a cmlc2:EGFP (enhanced green fluorescent protein) transgenesis marker and a variety of widely useful entry clones, including hsp70 and beta-actin promoters; cytoplasmic, nuclear, and membrane-localized fluorescent proteins; and internal ribosome entry sequence-driven EGFP cassettes for bicistronic expression. The Tol2kit greatly facilitates zebrafish transgenesis, simplifies the sharing of clones, and enables large-scale projects testing the functions of libraries of regulatory or coding sequences. Copyright 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tol2: a versatile gene transfer vector in vertebrates

            The medaka fish Tol2 element is an autonomous transposon that encodes a fully functional transposase. The transposase protein can catalyze transposition of a transposon construct that has 200 and 150 base pairs of DNA from the left and right ends of the Tol2 sequence, respectively. These sequences contain essential terminal inverted repeats and subterminal sequences. DNA inserts of fairly large sizes (as large as 11 kilobases) can be cloned between these sequences without reducing transpositional activity. The Tol2 transposon system has been shown to be active in all vertebrate cells tested thus far, including zebrafish, Xenopus, chicken, mouse, and human. In this review I describe and discuss how the Tol2 transposon is being applied to transgenic studies in these vertebrates, and possible future applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Codon usage is an important determinant of gene expression levels largely through its effects on transcription.

              Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                02 August 2023
                2023
                : 14
                : 1221310
                Affiliations
                [1] 1 Queensland Brain Institute , University of Queensland , St Lucia, QLD, Australia
                [2] 2 Institute for Molecular Biosciences , University of Queensland , St Lucia, QLD, Australia
                [3] 3 Queensland Centre for Mental Health Research , Wacol, QLD, Australia
                [4] 4 Centre for Cellular Phenomics , School of Environment and Science , Griffith Institute for Drug Discovery , Griffith University , Brisbane, QLD, Australia
                Author notes

                Edited by: Alejandro S. Mechaly, CONICET Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Argentina

                Reviewed by: Joachim Berger, Monash University, Australia

                Edor Kabashi, INSERM U1163 Institut Imagine, France

                *Correspondence: Jean Giacomotto, j.giacomotto@ 123456griffith.edu.au
                Article
                1221310
                10.3389/fphys.2023.1221310
                10433388
                6eb99bf8-6ded-437c-be46-981c25a62132
                Copyright © 2023 Tromp, Wang, Hall, Mowry and Giacomotto.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 May 2023
                : 04 July 2023
                Funding
                This work was supported in part by the Australian National Health and Medical Research Council (NHMRC) Project Grant No 1165850 to JG and BM and The Rebecca Cooper Medical Research Project Grant No PG2019405 to JG. JG was also supported by an NHMRC Emerging Leader Fellowship No 1174145.
                Categories
                Physiology
                Original Research
                Custom metadata
                Aquatic Physiology

                Anatomy & Physiology
                cre recombinase,conditional,transgenesis,plasmids,clones,mrna,mosaicism
                Anatomy & Physiology
                cre recombinase, conditional, transgenesis, plasmids, clones, mrna, mosaicism

                Comments

                Comment on this article