4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans.

          Candida albicans is the most common human fungal pathogen and causes significant morbidity and mortality worldwide. Nevertheless, the basic principles of C. albicans pathogenesis remain poorly understood. Of central importance to the study of this organism is the ability to generate homozygous knockout mutants and to analyze them in a mammalian model of pathogenesis. C. albicans is diploid, and current strategies for gene deletion typically involve repeated use of the URA3 selectable marker. These procedures are often time-consuming and inefficient. Moreover, URA3 expression levels-which are susceptible to chromosome position effects-can themselves affect virulence, thereby complicating analysis of strains constructed with URA3 as a selectable marker. Here, we describe a set of newly developed reference strains (leu2Delta/leu2Delta, his1Delta/his1Delta; arg4Delta/arg4Delta, his1Delta/his1Delta; and arg4Delta/arg4Delta, leu2Delta/leu2Delta, his1Delta/his1Delta) that exhibit wild-type or nearly wild-type virulence in a mouse model. We also describe new disruption marker cassettes and a fusion PCR protocol that permit rapid and highly efficient generation of homozygous knockout mutations in the new C. albicans strains. We demonstrate these procedures for two well-studied genes, TUP1 and EFG1, as well as a novel gene, RBD1. These tools should permit large-scale genetic analysis of this important human pathogen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distinct morphogenic states of Candida albicans.

            The human fungal pathogen, Candida albicans can grow in at least three different morphologies: yeast, pseudohyphae and hyphae. Further morphological forms exist during colony switching, for example, opaque phase cells are oblong, rather than the oval shape of yeast cells. Pseudohyphae and hyphae are both elongated and sometimes there has been little attempt to distinguish between them, as both are "filamentous forms" of the fungus. We review here the differences between them that suggest that they are distinct morphological states. We argue that studies on "filamentous forms" should always include a formal analysis to determine whether the cells are hyphae or pseudohyphae and we suggest some simple experimental criteria that can be applied to achieve this.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection.

              It is widely assumed that the ability of Candida albicans to switch between different morphologies is required for pathogenesis. However, most virulence studies have used mutants that are permanently locked into either the yeast or filamentous forms which are avirulent but unsuitable for discerning the role of morphogenetic conversions at the various stages of the infectious process. We have constructed a strain in which this developmental transition can be externally modulated both in vitro and in vivo. This was achieved by placing one copy of the NRG1 gene (a negative regulator of filamentation) under the control of a tetracycline-regulatable promoter. This modified strain was then tested in an animal model of hematogenously disseminated candidiasis. Mice injected with this strain under conditions permitting hyphal development succumbed to the infection, whereas all of the animals injected under conditions that inhibited this transition survived. Importantly, fungal burdens were almost identical in both sets of animals, indicating that, whereas filament formation appears to be required for the mortality resulting from a deep-seated infection, yeast cells play an important role early in the infectious process by extravasating and disseminating to the target organs. Moreover, these infecting Candida yeast cells still retained their pathogenic potential, as demonstrated by allowing this developmental transition to occur at various time points postinfection. We demonstrate here the importance of morphogenetic conversions in C. albicans pathogenesis. This engineered strain should provide a useful tool in unraveling the individual contributions of the yeast and filamentous forms at various stages of the infectious process.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                27 February 2023
                2023
                : 12
                : e85114
                Affiliations
                [1 ] Department of Pediatrics, Carver College of Medicine, University of Iowa ( https://ror.org/036jqmy94) Iowa City United States
                [2 ] Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa ( https://ror.org/036jqmy94) Iowa City United States
                [3 ] Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa ( https://ror.org/036jqmy94) Iowa City United States
                Johns Hopkins Bloomberg School of Public Health United States
                Johns Hopkins Bloomberg School of Public Health United States
                Johns Hopkins Bloomberg School of Public Health United States
                Johns Hopkins Bloomberg School of Public Health United States
                Author information
                https://orcid.org/0000-0001-6330-3365
                Article
                85114
                10.7554/eLife.85114
                9995110
                36847358
                6ca5da14-74a8-4918-9f87-8bd0d8ec9d9d
                © 2023, Wakade et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 23 November 2022
                : 26 February 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI133409
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Microbiology and Infectious Disease
                Custom metadata
                An intravital screen identifies the transcription factors that govern gene expression of the human fungal pathogen Candida albicans during filamentation in a mammalian host.

                Life sciences
                candida albicans,morphogenesis,transcriptional network,virulence traits,intravital imaging,other

                Comments

                Comment on this article