1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Airway Macrophages Mediate Mucosal Vaccine-Induced Trained Innate Immunity against Mycobacterium tuberculosis in Early Stages of Infection.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis (TB), is responsible for millions of infections and deaths annually. Decades of TB vaccine development have focused on adaptive T cell immunity, whereas the importance of innate immune contributions toward vaccine efficacy has only recently been recognized. Airway macrophages (AwM) are the predominant host cell during early pulmonary M. tuberculosis infection and, therefore, represent attractive targets for vaccine-mediated immunity. We have demonstrated that respiratory mucosal immunization with a viral-vectored vaccine imprints AwM, conferring enhanced protection against heterologous bacterial challenge. However, it is unknown if innate immune memory also protects against M. tuberculosis In this study, by using a murine model, we detail whether respiratory mucosal TB vaccination profoundly alters the airway innate immune landscape associated with AwM prior to M. tuberculosis exposure and whether such AwM play a critical role in host defense against M. tuberculosis infection. Our study reveals an important role of AwM in innate immune protection in early stages of M. tuberculosis infection in the lung.

          Related collections

          Author and article information

          Journal
          J Immunol
          Journal of immunology (Baltimore, Md. : 1950)
          The American Association of Immunologists
          1550-6606
          0022-1767
          Nov 15 2020
          : 205
          : 10
          Affiliations
          [1 ] McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
          [2 ] McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada xingz@mcmaster.ca.
          Article
          jimmunol.2000532
          10.4049/jimmunol.2000532
          32998983
          676da06c-c675-49d8-aa4c-5052f3620274
          History

          Comments

          Comment on this article