58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retrospective Exposure Estimation and Predicted versus Observed Serum Perfluorooctanoic Acid Concentrations for Participants in the C8 Health Project

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: People living or working in eastern Ohio and western West Virginia have been exposed to perfluorooctanoic acid (PFOA) released by DuPont Washington Works facilities.

          Objectives: Our objective was to estimate historical PFOA exposures and serum concentrations experienced by 45,276 non-occupationally exposed participants in the C8 Health Project who consented to share their residential histories and a 2005–2006 serum PFOA measurement.

          Methods: We estimated annual PFOA exposure rates for each individual based on predicted calibrated water concentrations and predicted air concentrations using an environmental fate and transport model, individual residential histories, and maps of public water supply networks. We coupled individual exposure estimates with a one-compartment absorption, distribution, metabolism, and excretion (ADME) model to estimate time-dependent serum concentrations.

          Results: For all participants ( n = 45,276), predicted and observed median serum concentrations in 2005–2006 are 14.2 and 24.3 ppb, respectively [Spearman’s rank correlation coefficient ( r s) = 0.67]. For participants who provided daily public well water consumption rate and who had the same residence and workplace in one of six municipal water districts for 5 years before the serum sample ( n = 1,074), predicted and observed median serum concentrations in 2005–2006 are 32.2 and 40.0 ppb, respectively ( r s = 0.82).

          Conclusions: Serum PFOA concentrations predicted by linked exposure and ADME models correlated well with observed 2005–2006 human serum concentrations for C8 Health Project participants. These individualized retrospective exposure and serum estimates are being used in a variety of epidemiologic studies being conducted in this region.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000

          Background Polyfluoroalkyl chemicals (PFCs) have been used since the 1950s in numerous commercial applications. Exposure of the general U.S. population to PFCs is widespread. Since 2002, the manufacturing practices for PFCs in the United States have changed considerably. Objectives We aimed to assess exposure to perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and eight other PFCs in a representative 2003–2004 sample of the general U.S. population ≥ 12 years of age and to determine whether serum concentrations have changed since the 1999–2000 National Health and Nutrition Examination Survey (NHANES). Methods By using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,094 serum samples collected from NHANES 2003–2004 participants. Results We detected PFOS, PFOA, PFHxS, and PFNA in > 98% of the samples. Concentrations differed by race/ethnicity and sex. Geometric mean concentrations were significantly lower (approximately 32% for PFOS, 25% for PFOA, 10% for PFHxS) and higher (100%, PFNA) than the concentrations reported in NHANES 1999–2000 (p < 0.001). Conclusions In the general U.S. population in 2003–2004, PFOS, PFOA, PFHxS, and PFNA serum concentrations were measurable in each demographic population group studied. Geometric mean concentrations of PFOS, PFOA, and PFHxS in 2003–2004 were lower than in 1999–2000. The apparent reductions in concentrations of PFOS, PFOA, and PFHxS most likely are related to discontinuation in 2002 of industrial production by electrochemical fluorination of PFOS and related perfluorooctanesulfonyl fluoride compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)

            Objective and sources We reviewed the epidemiologic literature for PFOA. Data synthesis Perfluorooctanoic acid (PFOA) does not occur naturally but is present in the serum of most residents of industrialized countries (U.S. median, 4 ng/mL). Drinking water is the primary route of exposure in some populations, but exposure sources are not well understood. PFOA has been used to manufacture such products as Gore-Tex and Teflon. PFOA does not break down in the environment; the human half-life is estimated at about 3 years. PFOA is not metabolized in the body; it is not lipophilic. PFOA is not directly genotoxic; animal data indicate that it can cause several types of tumors and neonatal death and may have toxic effects on the immune, liver, and endocrine systems. Data on the human health effects of PFOA are sparse. There is relatively consistent evidence of modest positive associations with cholesterol and uric acid, although the magnitude of the cholesterol effect is inconsistent across different exposure levels. There is some but much less consistent evidence of a modest positive correlation with liver enzymes. Most findings come from cross-sectional studies, limiting conclusions. Two occupational cohort studies do not provide consistent evidence for chronic disease; both are limited by sample size and reliance on mortality data. Reproductive data have increased recently but are inconsistent, and any observed adverse effects are modest. Conclusions Epidemiologic evidence remains limited, and to date data are insufficient to draw firm conclusions regarding the role of PFOA for any of the diseases of concern.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia

              Background Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007. Objectives To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration. Methods Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May–June 2007. Results For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May–June 2007 and May–August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November–December 2007 and May–June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 25–28% per year). Conclusions The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                03 August 2011
                December 2011
                : 119
                : 12
                : 1760-1765
                Affiliations
                [1 ]School of Social Ecology, University of California, Irvine, California, USA
                [2 ]Department of Environmental Health, Boston University, Boston, Massachusetts, USA
                [3 ]Department of Environmental Health, Emory University, Atlanta, Georgia, USA
                [4 ]Program in Public Health, Department of Statistics, and Department of Epidemiology, University of California, Irvine, California, USA
                Author notes
                Address correspondence to H.-M. Shin, University of California, Davis, One Shields Avenue, MS1-C, Davis, CA 95616 USA. Telephone: (949) 648-1614. Fax: (949) 824-9863. E-mail: hmshin@ 123456ucdavis.edu
                Article
                ehp.1103729
                10.1289/ehp.1103729
                3261988
                21813367
                65c0e390-2fbe-4fae-a987-b63f81914888
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 March 2011
                : 03 August 2011
                Categories
                Research

                Public health
                exposure,serum,pharmacokinetics,perfluorooctanoic acid
                Public health
                exposure, serum, pharmacokinetics, perfluorooctanoic acid

                Comments

                Comment on this article