11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Exposure Through Fish Consumption in Italy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are pollutants of anthropic origin with possible side effects on human health. Diet, and in particular fish and seafood, is considered the major intake pathway for humans. The present study investigated the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in twenty-five samples of fresh fillet of five widely consumed fish species purchased from large retailers in Italy, to be used for an estimation of the Italian population exposure to these contaminants. PFOS and PFOA were found in all samples, at concentrations up to 1896 (mean=627 ng/kg) and 487 ng/kg (mean = 75 ng/kg), respectively, confirming the role of fish as high contributor to human exposure. However, a remarkable inter-species variability was observed, and multiple factors were suggested as potentially responsible for such differences, suggesting that the preferential consumption of certain species could likely increase the intake, and thus the exposure. The exposure estimates for both average and high fish consumers resulted far below the tolerable daily intakes for PFOS and PFOA in all age groups, confirming the outcomes of EFSA’s scientific report. In particular, the calculated total dietary exposure for the 95 th percentile consumers belonging to the toddler age class, the most exposed group, resulted equal to 9.72 ng/kg body weight (BW)/day for PFOS and 8.39 ng/kg BW/day for PFOA.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

          The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources, fate and transport of perfluorocarboxylates.

            This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking the pathways of human exposure to perfluorocarboxylates.

              Recent analyses of perfluorooctanoate (PFOA) in human blood sera show that the background-exposed population in industrialized countries worldwide exhibits a narrow concentration range; arithmetic means of published studies range between 2 and 8 microg/L PFOA, with the exception of a few outlier studies. The globally comparable human serum concentrations of PFOA and characteristic dominance of PFOA with respect to other perfluorocarboxylate (PFCA) homologues indicate that exposure pathways of humans differ from those of wildlife, where perfluorononanoate (PFNA) is often the dominant homologue. The observed correlations between perfluorooctane sulfonate (PFOS) and PFOA in human serum together with a simultaneous downward time trend of these compounds in human blood sera and blood spots from the year 2000 onward indicate a connection between historical perfluorooctanesulfonyl (POSF) production (phased out by the major manufacturer in 2000-2002) and exposure to both PFOS and PFOA. A comparison of estimated daily intakes to humans based on samples from exposure media (collected post 2000) indicates that food intake is the major contemporary exposure pathway for the background population, whereas drinking water exposure is dominant for populations near sources of contaminated drinking water. A one-compartment pharmacokinetic model used to back-calculate daily intakes from serum levels is shown to provide agreement within a factor of 1.5-5.5 of the daily intakes derived from exposure media, which provides further supporting evidence that dietary exposure is a major ongoing exposure pathway of PFOA to the background population.
                Bookmark

                Author and article information

                Journal
                Ital J Food Saf
                Ital J Food Saf
                IJFS
                Italian Journal of Food Safety
                PAGEPress Publications, Pavia, Italy
                2239-7132
                02 November 2016
                20 September 2016
                : 5
                : 4
                : 6055
                Affiliations
                [1 ]CABA-Lab, Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano Emilia (BO)
                [2 ]Veterinary Epidemiology and Risk Assessment Unit, Department of Food Safety and Veterinary Public Health, National Institute of Health , Rome, Italy
                Author notes
                CABA-Lab, Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy. +39.051.2097500. andrea.barbarossa@ 123456unibo.it

                Conflict of interest: the authors declare no potential conflict of interest.

                Article
                10.4081/ijfs.2016.6055
                5178833
                28058243
                a7a653b6-a204-47eb-909c-d75057d8d5de
                ©Copyright A. Barbarossa et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 July 2016
                : 07 September 2016
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 32, Pages: 6
                Categories
                Article

                perfluoroalkyl substances,perfluorooctane sulfonate,perfluorooctanoic acid,exposure assessment,fish

                Comments

                Comment on this article