16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Collaborative Power of Nrf2 and PPAR γ Activators against Metabolic and Drug-Induced Oxidative Injury

      review-article
      *
      Oxidative Medicine and Cellular Longevity
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian cells have evolved a unique strategy to protect themselves against oxidative damage induced by reactive oxygen species (ROS). Especially, two transcription factors, nuclear factor erythroid 2p45-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor γ (PPAR γ), have been shown to play key roles in establishing this cellular antioxidative defense system. Recently, several researchers reported ameliorating effects of pharmacological activators for these Nrf2 and PPAR γ pathways on the progression of various metabolic disorders and drug-induced organ injuries by oxidative stress. In this review, general features of Nrf2 and PPAR γ pathways in the context of oxidative protection will be summarized first. Then, a number of successful applications of natural and synthetic Nrf2 and PPAR γ activators to the alleviation of pathological and drug-related oxidative damage will be discussed later.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanisms of action of PPARs.

            The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPAR gamma, PPAR alpha, and PPAR delta, encoded by different genes. PPARs are ligand-regulated transcription factors that control gene expression by binding to specific response elements (PPREs) within promoters. PPARs bind as heterodimers with a retinoid X receptor and, upon binding agonist, interact with cofactors such that the rate of transcription initiation is increased. The PPARs play a critical physiological role as lipid sensors and regulators of lipid metabolism. Fatty acids and eicosanoids have been identified as natural ligands for the PPARs. More potent synthetic PPAR ligands, including the fibrates and thiazolidinediones, have proven effective in the treatment of dyslipidemia and diabetes. Use of such ligands has allowed researchers to unveil many potential roles for the PPARs in pathological states including atherosclerosis, inflammation, cancer, infertility, and demyelination. Here, we present the current state of knowledge regarding the molecular mechanisms of PPAR action and the involvement of the PPARs in the etiology and treatment of several chronic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.

              Hypersensitive site 2 located in the beta-globin locus control region confers high levels of expression to the genes of the beta-globin cluster. A tandem repeat of the consensus sequence for the transcription factors AP1 and NF-E2 (activating protein 1 and nuclear factor erythroid 2, respectively) is present within hypersensitive site 2 and is absolutely required for strong enhancer activity. This sequence binds, in vitro and in vivo, to ubiquitous proteins of the AP1 family and to the recently cloned erythroid-specific transcription factor NF-E2. Using the tandem repeat as a recognition site probe to screen a lambda gt11 cDNA expression library from K562 cells, we isolated several DNA binding proteins. Here, we report the characterization of one of the clones isolated. The gene, which we named Nrf2 (NF-E2-related factor 2), is encoded within a 2.2-kb transcript and predicts a 66-kDa protein with a basic leucine zipper DNA binding domain highly homologous to that of NF-E2. Although Nrf2 is expressed ubiquitously, a role of this protein in mediating enhancer activity of hypersensitive site 2 in erythroid cells cannot be excluded. In this respect, Nrf2 contains a powerful acidic activation domain that may participate in the transcriptional stimulation of beta-globin genes.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2017
                27 August 2017
                : 2017
                : 1378175
                Affiliations
                College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
                Author notes

                Academic Editor: M. Yvonne Alexander

                Author information
                http://orcid.org/0000-0002-4630-8428
                Article
                10.1155/2017/1378175
                5591982
                28928902
                61e768a3-d4db-44e6-847b-0897b06d2bff
                Copyright © 2017 Choongho Lee.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 April 2017
                : 25 July 2017
                Funding
                Funded by: Ministry of Health and Welfare
                Award ID: HI13C1046
                Funded by: Korean Health Technology R&D Project
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article