25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ligand Binding Reduces SUMOylation of the Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation Function 1 (AF1) Domain

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1) domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD) of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.

          The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes. Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis. Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma.

            Regulation of adipose cell mass is a critical homeostatic process in higher vertebrates. The conversion of fibroblasts into cells of the adipose lineage is induced by expression of the orphan nuclear receptor PPAR gamma. This suggests that an endogenous PPAR gamma ligand may be an important regulator of adipogenesis. By assaying arachidonate metabolites for their capacity to activate PPAR response elements, we have identified 15-deoxy-delta 12, 14-prostaglandin J2 as both a PPAR gamma ligand and an inducer of adipogenesis. Similarly, the thiazolidinedione class of antidiabetic drugs also bind to PPAR gamma and act as potent regulators of adipocyte development. Thus, adipogenic prostanoids and antidiabetic thiazolidinediones initiate key transcriptional events through a common nuclear receptor signaling pathway. These findings suggest a pivotal role for PPAR gamma and its endogenous ligand in adipocyte development and glucose homeostasis and as a target for intervention in metabolic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones.

              Fibroblast growth factor-21 (FGF21) is a circulating hepatokine that beneficially affects carbohydrate and lipid metabolism. Here, we report that FGF21 is also an inducible, fed-state autocrine factor in adipose tissue that functions in a feed-forward loop to regulate the activity of peroxisome proliferator-activated receptor γ (PPARγ), a master transcriptional regulator of adipogenesis. FGF21 knockout (KO) mice display defects in PPARγ signaling including decreased body fat and attenuation of PPARγ-dependent gene expression. Moreover, FGF21-KO mice are refractory to both the beneficial insulin-sensitizing effects and the detrimental weight gain and edema side effects of the PPARγ agonist rosiglitazone. This loss of function in FGF21-KO mice is coincident with a marked increase in the sumoylation of PPARγ, which reduces its transcriptional activity. Adding back FGF21 prevents sumoylation and restores PPARγ activity. Collectively, these results reveal FGF21 as a key mediator of the physiologic and pharmacologic actions of PPARγ. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                24 June 2013
                : 8
                : 6
                : e66947
                Affiliations
                [1]Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
                Institute of Enzymology of the Hungarian Academy of Science, Hungary
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RD GS. Performed the experiments: RD. Analyzed the data: RD GS. Wrote the paper: GS.

                Article
                PONE-D-12-39149
                10.1371/journal.pone.0066947
                3691213
                23826177
                6191ba00-94a1-4476-afb8-58477a8333b2
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 November 2012
                : 10 May 2013
                Page count
                Pages: 10
                Funding
                This work was supported by a grant of the priority research program Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) “Tumor and Inflammation” to GS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Conjugated Proteins
                DNA-binding proteins
                Protein Interactions
                Recombinant Proteins
                Regulatory Proteins
                Biomacromolecule-Ligand Interactions
                Small Molecules
                Genetics
                Molecular Genetics
                Gene Regulation
                Proteomics
                Protein Interactions

                Uncategorized
                Uncategorized

                Comments

                Comment on this article