0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Binding kinetics of quaternary ammonium ions in Kcv potassium channels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms −1 were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of Kcv NTS must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          UCSF Chimera--a visualization system for exploratory research and analysis.

          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein structure homology modeling using SWISS-MODEL workspace.

            Homology modeling aims to build three-dimensional protein structure models using experimentally determined structures of related family members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert system. For a given target protein, a library of experimental protein structures is searched to identify suitable templates. On the basis of a sequence alignment between the target protein and the template structure, a three-dimensional model for the target protein is generated. Model quality assessment tools are used to estimate the reliability of the resulting models. Homology modeling is currently the most accurate computational method to generate reliable structural models and is routinely used in many biological applications. Typically, the computational effort for a modeling project is less than 2 h. However, this does not include the time required for visualization and interpretation of the model, which may vary depending on personal experience working with protein structures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties

                Bookmark

                Author and article information

                Journal
                Channels (Austin)
                Channels (Austin)
                Channels
                Taylor & Francis
                1933-6950
                1933-6969
                9 October 2024
                2024
                9 October 2024
                : 18
                : 1
                : 2402749
                Affiliations
                [a ]Plant Membrane Biophysics, Technische Universität Darmstadt; , Darmstadt, Germany
                [b ]Department of Structural Biology, Christian-Albrechts-University; , Kiel, Germany
                [c ]Physiology II, University Hospital Jena, Friedrich Schiller University; , Jena, Germany
                Author notes
                Author information
                https://orcid.org/0000-0002-7875-983X
                Article
                2402749
                10.1080/19336950.2024.2402749
                11575739
                39383513
                619132a4-3bc1-4f10-8309-57825f265d0a
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 11, References: 57, Pages: 19, Words: 9325
                Categories
                Research Article
                Research Article

                Molecular biology
                fast block,viral potassium channel,diffusion limitation,blocker,planar lipid bilayer,single-channel currents

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content115

                Most referenced authors1,032