45
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Prediction of Gene Bank Wheat Landraces

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, “diversity” and “prediction”, including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15–20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments

          Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dynamics of long-term genomic selection

            Background Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid gains in early selection cycles. Beyond those cycles, allele frequency changes, recombination, and inbreeding make analytical prediction of gain impossible. The impacts of GS on long-term gain should be studied prior to its implementation. Methods A simulation case-study of this issue was done for barley, an inbred crop. On the basis of marker data on 192 breeding lines from an elite six-row spring barley program, stochastic simulation was used to explore the effects of large or small initial training populations with heritabilities of 0.2 or 0.5, applying GS before or after phenotyping, and applying additional weight on low-frequency favorable marker alleles. Genomic predictions were from ridge regression or a Bayesian analysis. Results Assuming that applying GS prior to phenotyping shortened breeding cycle time by 50%, this practice strongly increased early selection gains but also caused the loss of many favorable QTL alleles, leading to loss of genetic variance, loss of GS accuracy, and a low selection plateau. Placing additional weight on low-frequency favorable marker alleles, however, allowed GS to increase their frequency earlier on, causing an initial increase in genetic variance. This dynamic led to higher long-term gain while mitigating losses in short-term gain. Weighted GS also increased the maintenance of marker polymorphism, ensuring that QTL-marker linkage disequilibrium was higher than in unweighted GS. Conclusions Losing favorable alleles that are in weak linkage disequilibrium with markers is perhaps inevitable when using GS. Placing additional weight on low-frequency favorable alleles, however, may reduce the rate of loss of such alleles to below that of phenotypic selection. Applying such weights at the beginning of GS implementation is important.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-enabled prediction of genetic values using radial basis function neural networks

              The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait–environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                25 April 2016
                July 2016
                : 6
                : 7
                : 1819-1834
                Affiliations
                [* ]Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
                []Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 321 Keim Hall, Lincoln, Nebraska 68583-0915
                []Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Universidad de la República (Udelar), Paysandú, Uruguay
                [§ ]Colegio de Post-Graduados, Montecillos, Edo. de Mexico, 56230 Mexico
                [** ]Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York 14853
                [†† ]Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691
                Author notes
                [1 ]Corresponding authors: International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico. E-mail: j.crossa@ 123456cgiar.org ; suk.singh@ 123456cgiar.org
                Author information
                http://orcid.org/0000-0001-9429-5855
                Article
                GGG_029637
                10.1534/g3.116.029637
                4938637
                27172218
                5f72e2d6-9dab-4532-a242-bf5f9eec7cca
                Copyright © 2016 Crossa et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 January 2016
                : 15 April 2016
                Page count
                Figures: 2, Tables: 8, Equations: 6, References: 44, Pages: 16
                Categories
                Genomic Selection

                Genetics
                gene bank accessions,genomic prediction,cross-validations,reference core subsets,a × e: accession × environment interaction,genpred,shared data resources,genomic selection

                Comments

                Comment on this article