98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.

          Author Summary

          In mammals, nearly half the genome is composed of reiterated scattered sequences. Some of them, called endogenous retroviruses, have a structure similar to that observed for the integrated form of infectious retroviruses. The current theory to account for their presence is that an infectious retrovirus once infected the germline of its host. This viral genome was then transmitted to the progeny and expressed from there, producing new infectious particles, which could re-infect new germline cells and thus increase the viral genomic copy number. However no evidence has yet been provided to support this model. In this study, we identify a family of five cellular proteins, the Ephrin As, as receptors for a model mouse family of endogenous retroviruses, the IAPE elements. We analyse their expression pattern and show that both the oocytes and some male germline cells express Ephrin A proteins and can thus be infected by IAPE particles. This finding strongly supports the current model of ERVs amplification. In addition, the IAPE envelope ability to use five different cellular receptors suggests that it might be impossible for the host to evolve a resistance against this viral element, and provides a clue on how the IAPE family survived so long in the mouse genome.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Retrotransposons revisited: the restraint and rehabilitation of parasites.

          Retrotransposons, mainly LINEs, SINEs, and endogenous retroviruses, make up roughly 40% of the mammalian genome and have played an important role in genome evolution. Their prevalence in genomes reflects a delicate balance between their further expansion and the restraint imposed by the host. In any human genome only a small number of LINE1s (L1s) are active, moving their own and SINE sequences into new genomic locations and occasionally causing disease. Recent insights and new technologies promise answers to fundamental questions about the biology of transposable elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus.

            Nipah virus (NiV) is an emergent paramyxovirus that causes fatal encephalitis in up to 70 percent of infected patients, and there is evidence of human-to-human transmission. Endothelial syncytia, comprised of multinucleated giant-endothelial cells, are frequently found in NiV infections, and are mediated by the fusion (F) and attachment (G) envelope glycoproteins. Identification of the receptor for this virus will shed light on the pathobiology of NiV infection, and spur the rational development of effective therapeutics. Here we report that ephrinB2, the membrane-bound ligand for the EphB class of receptor tyrosine kinases (RTKs), specifically binds to the attachment (G) glycoprotein of NiV. Soluble Fc-fusion proteins of ephrinB2, but not ephrinB1, effectively block NiV fusion and entry into permissive cell types. Moreover, transfection of ephrinB2 into non-permissive cells renders them permissive for NiV fusion and entry. EphrinB2 is expressed on endothelial cells and neurons, which is consistent with the known cellular tropism for NiV. Significantly, we find that NiV-envelope-mediated infection of microvascular endothelial cells and primary cortical rat neurons is inhibited by soluble ephrinB2, but not by the related ephrinB1 protein. Cumulatively, our data show that ephrinB2 is a functional receptor for NiV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter.

              Prolonged exposure of human hematopoietic stem cells (HSC) to growth factors for efficient transduction by murine oncoretroviral vectors has major detrimental effects on repopulating activity. In this study, we have used a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped human immunodeficiency virus type 1 (HIV-1) lentiviral-based vector system to transduce cord blood (CB) CD34+ cells over a limited time period (< or =24 hours). Under these conditions, significant gene marking was observed in engrafted human lymphoid, myeloid, and progenitor cells in all transplanted Severe Combined Immunodeficient (SCID) mice. To enhance the level of gene expression in hematopoietic cells, we also generated a series of lentiviral vectors incorporating the spleen focus forming virus (SFFV) long terminal repeat (LTR) sequences, and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). By including the central polypurine tract (cPPT) sequence of HIV-1 we were then able to achieve high levels of transduction (over 80%) and gene expression in vivo after a single exposure to viral supernatant. These results demonstrate that lentiviral vectors are highly effective for gene transfer to human HSC, and that SFFV regulatory sequences can be successfully incorporated to enhance the long-term expression of a transgene in primary human hematopoietic cells in vivo.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2011
                October 2011
                20 October 2011
                : 7
                : 10
                : e1002309
                Affiliations
                [1 ]CNRS UMR 8122, Institut Gustave Roussy, Villejuif, France
                [2 ]Université Paris-Sud, Orsay, France
                [3 ]Université de Lyon, UCB-Lyon1, IFR128, Lyon, France
                [4 ]INSERM, U758, Lyon, France
                [5 ]Ecole Normale Supérieure de Lyon, Lyon, France
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                ¤: Current address: Unité des interactions Bactéries-Cellules, Institut Pasteur, Paris, France.

                Conceived and designed the experiments: MD TH. Performed the experiments: MD. Analyzed the data: MD TH. Contributed reagents/materials/analysis tools: CV DR BB FLC. Wrote the paper: MD TH.

                Article
                PPATHOGENS-D-11-00822
                10.1371/journal.ppat.1002309
                3197615
                22028653
                5deb0417-f308-41ef-b036-5e22b33e097b
                Dewannieux et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 April 2011
                : 25 August 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Transmission and Infection
                Viral Entry
                Host-Pathogen Interaction
                Molecular Cell Biology
                Transposons
                Retrotransposons

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article