37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of Hippocampal Neuroplasticity by Fas/CD95 Regulatory Protein 2 (Faim2) in the Course of Bacterial Meningitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental digital content is available in the text.

          Abstract

          Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          How widespread is adult neurogenesis in mammals?

          It is now widely accepted that neurogenesis occurs in two regions of the adult mammalian brain--the hippocampus and the olfactory bulb. There is evidence for adult neurogenesis in several additional areas, including the neocortex, striatum, amygdala and substantia nigra, but this has been difficult to replicate consistently other than in the damaged brain. The discrepancies may be due to variations in the sensitivity of the methods used to detect new neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal caspase-3 signaling: not only cell death.

            Caspases are a family of cysteinyl aspartate-specific proteases that are highly conserved in multicellular organisms and function as central regulators of apoptosis. A member of this family, caspase-3, has been identified as a key mediator of apoptosis in neuronal cells. Recent studies in snail, fly and rat suggest that caspase-3 also functions as a regulatory molecule in neurogenesis and synaptic activity. In this study, in addition to providing an overview of the mechanism of caspase-3 activation, we review genetic and pharmacological studies of apoptotic and nonapoptotic functions of caspase-3 and discuss the regulatory mechanism of caspase-3 for executing nonapoptotic functions in the central nervous system. Knowledge of biochemical pathway(s) for nonapoptotic activation and modulation of caspase-3 has potential implications for the understanding of synaptic failure in the pathophysiology of neurological disorders. Fine-tuning of caspase-3 lays down a new challenge in identifying pharmacological avenues for treatment of many neurological disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selectivity in neurotrophin signaling: theme and variations.

              Neurotrophins are a family of growth factors critical for the development and functioning of the nervous system. Although originally identified as neuronal survival factors, neurotrophins elicit many biological effects, ranging from proliferation to synaptic modulation to axonal pathfinding. Recent data indicate that the nature of the signaling cascades activated by neurotrophins, and the biological responses that ensue, are specified not only by the ligand itself but also by the temporal pattern and spatial location of stimulation. Studies on neurotrophin signaling have revealed variations in the Ras/MAP kinase, PI3 kinase, and phospholipase C pathways, which transmit spatial and temporal information. The anatomy of neurons makes them particularly appropriate for studying how the location and tempo of stimulation determine the signal cascades that are activated by receptor tyrosine kinases such as the Trk receptors. These signaling variations may represent a general mechanism eliciting specificity in growth factor responses.
                Bookmark

                Author and article information

                Journal
                J Neuropathol Exp Neurol
                J. Neuropathol. Exp. Neurol
                NEN
                Journal of Neuropathology and Experimental Neurology
                American Association of Neuropathologists
                0022-3069
                1554-6578
                January 2014
                19 December 2013
                : 73
                : 1
                : 2-13
                Affiliations
                From the Department of Neurology (SCT, BF, JBS, AR), University Hospital and Institute of Neuropathology (JW, BS), Medical Faculty, RWTH Aachen University, Aachen; Department of Neurodegeneration and Restorative Research (KH), Georg-August University, Göttingen; DFG Research Center, Molecular Physiology of the Brain (CMPB), Göttingen; Department of Geriatrics (RN), Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany.
                Author notes
                Send correspondence and reprint requests to: Simone C. Tauber, MD, Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany; E-mail: stauber@ 123456ukaachen.de
                Article
                NEN13177 00002
                10.1097/NEN.0000000000000020
                3978830
                24335530
                234bbc37-eae2-4466-b349-8e5299b2a06d
                Copyright © 2013 by the American Association of Neuropathologists, Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivitives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

                History
                Categories
                Original Articles
                Custom metadata
                TRUE
                T

                bacterial meningitis,erk 1/2,fas apoptotic inhibitory molecule 2 (faim2),fas/cd95,hippocampal neurogenesis,spatial learning and memory,streptococcus pneumoniae

                Comments

                Comment on this article