1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TransientX: A high-performance single-pulse search package

      ,
      Astronomy & Astrophysics
      EDP Sciences

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. Radio interferometers composed of a large array of small antennas possess large fields of view, coupled with high sensitivities. For example, the Karoo Array Telescope (MeerKAT) achieves a gain of up to 2.8 KJy −1 across its >1 deg 2 field of view. This capability significantly enhances the survey speed for pulsars and fast transients. It also introduces challenges related to the high data rate, which reaches a few Tb s −1 for MeerKAT, and it requires substantial computing power.

          Aims. To handle the high data rate of surveys, we have developed a high-performance single-pulse search software called “TransientX”. This software integrates multiple processes into one pipeline, which includes radio-frequency interference mitigation, dedispersion, matched filtering, clustering, and candidate plotting.

          Methods. In T RANSIENTX, we developed an efficient CPU-based dedispersion implementation using the sub-band dedispersion algorithm. Additionally, T RANSIENTX employs the density-based spatial clustering of applications with noise (DBSCAN) algorithm to eliminate duplicate candidates, using an efficient implementation based on the kd-tree data structure. We also calculate the decrease of signal-to-noise ratio (s/N) resulting from dispersion measure, boxcar width, spectral index, and pulse-shape mismatches. Remarkably, we find that the decrease of S/N resulting from the mismatch between a boxcar-shaped template and a Gaussian-shaped pulse with scattering remains relatively small, at approximately 9%, even when the scattering timescale is ten times that of the pulse width. Additionally, the decrease in the S/N resulting from the spectral index mismatch becomes significant with multi-octave receivers.

          Results. We have benchmarked the individual processes, including dedispersion, matched filtering, and clustering. Our dedispersion implementation can be executed in real time using a single CPU core on data with 4096 dispersion measure trials, which consist of 4096 channels and have a time resolution of 153 µs. Overall, T RANSIENTX offers the capability for efficient CPU-only real-time single-pulse searching.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Searches for Fast Radio Transients

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The First CHIME/FRB Fast Radio Burst Catalog

              We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of α = − 1.40 ± 0.11 ( stat. ) − 0.09 + 0.06 ( sys. ) , consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find that α is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of [ 820 ± 60 ( stat. ) − 200 + 220 ( sys. ) ] / sky / day above a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm −3 .
                Bookmark

                Author and article information

                Contributors
                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                March 2024
                March 19 2024
                March 2024
                : 683
                : A183
                Article
                10.1051/0004-6361/202348247
                595f4bec-bdfb-48e7-81b6-278f6b87d27f
                © 2024

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article