37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organochlorine Pesticides and Risk of Endometriosis: Findings from a Population-Based Case–Control Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Endometriosis is considered an estrogen-dependent disease. Persistent environmental chemicals that exhibit hormonal properties, such as organochlorine pesticides (OCPs), may affect endometriosis risk.

          Objective: We investigated endometriosis risk in relation to environmental exposure to OCPs.

          Methods: We conducted the present analyses using data from the Women’s Risk of Endometriosis (WREN) study, a population-based case–control study of endometriosis conducted among 18- to 49-year-old female enrollees of a large health care system in western Washington State. OCP concentrations were measured in sera from surgically confirmed endometriosis cases ( n = 248) first diagnosed between 1996 and 2001 and from population-based controls ( n = 538). We estimated odds ratios (OR) and 95% CIs using unconditional logistic regression, adjusting for age, reference date year, serum lipids, education, race/ethnicity, smoking, and alcohol intake.

          Results: Our data suggested increased endometriosis risk associated with serum concentrations of β-hexachlorocyclohexane (HCH) (third vs. lowest quartile: OR = 1.7; 95% CI: 1.0, 2.8; highest vs. lowest quartile OR = 1.3; 95% CI: 0.8, 2.4) and mirex (highest vs. lowest category: OR = 1.5; 95% CI: 1.0, 2.2). The association between serum β-HCH concentrations and endometriosis was stronger in analyses restricting cases to those with ovarian endometriosis (third vs. lowest quartile: OR = 2.5; 95% CI: 1.5, 5.2; highest vs. lowest quartile: OR = 2.5; 95% CI: 1.1, 5.3).

          Conclusions: In our case–control study of women enrolled in a large health care system in the U.S. Pacific Northwest, serum concentrations of β-HCH and mirex were positively associated with endometriosis. Extensive past use of environmentally persistent OCPs in the United States or present use in other countries may affect the health of reproductive-age women.

          Citation: Upson K, De Roos AJ, Thompson ML, Sathyanarayana S, Scholes D, Barr DB, Holt VL. 2013. Organochlorine pesticides and risk of endometriosis: findings from a population-based case–control study. Environ Health Perspect 121:1319–1324;  http://dx.doi.org/10.1289/ehp.1306648

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

          Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants.

            Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula of MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17 beta-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several "new" estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase in cell yields. The aims of the work summarized in this paper were a) to validate the E-SCREEN assay; b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; c) to assess whether environmental estrogens may act cumulatively; and finally d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chlorinated hydrocarbon levels in human serum: effects of fasting and feeding.

              Twenty healthy adult humans had serum samples drawn on four occasions within a 24-hr period: after a 12 hr overnight fast, 4-5 hr after a high fat breakfast, at midafternoon, and the next morning after another 12 hr fast. Nonfasting samples had 22% to 29% higher mean concentrations (p less than 0.05) than did fasting samples for polychlorinated biphenyls (PCBs, 4.81 vs 3.74 ng/g serum wt), hexachlorobenzene (HCB, 0.163 vs 0.134 ng/g serum wt), and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE, 6.74 vs 5.37 ng/g serum wt) measured by electron capture gas liquid chromatography. Total serum lipids were estimated from measurements of total cholesterol, free cholesterol, triglycerides, and phospholipids and were 20% higher in nonfasting samples than in fasting samples (7.05 g/L vs 5.86 g/L). When PCBs, HCB, and p,p'-DDE concentrations were corrected by total serum lipids, results from fasting and non-fasting samples were not statistically different. Because of the differences in these chlorinated hydrocarbon concentrations observed with different sample collection regimens, meaningful comparison of analytical results requires standardizing collection procedures or correcting by total serum lipid levels.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                05 November 2013
                01 December 2013
                : 121
                : 11-12
                : 1319-1324
                Affiliations
                [1 ]Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
                [2 ]Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
                [3 ]Department of Biostatistics, and
                [4 ]Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
                [5 ]Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
                [6 ]Seattle Children’s Research Institute, Seattle, Washington, USA
                [7 ]Group Health Research Institute, Seattle, Washington, USA
                [8 ]Emory University, Rollins School of Public Health, Atlanta, Georgia, USA
                Author notes
                Address correspondence to K. Upson, Department of Epidemiology, School of Public Health, University of Washington, 1959 NE Pacific St., Box 357236, Seattle, WA 98195-7236, USA. Telephone: (206) 667-7011. E-mail: kupson@ 123456u.washington.edu
                Article
                ehp.1306648
                10.1289/ehp.1306648
                3855515
                24192044
                58a16fb7-7e8a-40cb-be7c-0c06fd6b66b1

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 23 March 2013
                : 17 September 2013
                : 05 November 2013
                : 01 December 2013
                Categories
                Article

                Public health
                Public health

                Comments

                Comment on this article