25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Segment of γ ENaC Mediates Elastase Activation of Na + Transport

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epithelial Na + channel (ENaC) that mediates regulated Na + reabsorption by epithelial cells in the kidney and lungs can be activated by endogenous proteases such as channel activating protease 1 and exogenous proteases such as trypsin and neutrophil elastase (NE). The mechanism by which exogenous proteases activate the channel is unknown. To test the hypothesis that residues on ENaC mediate protease-dependent channel activation wild-type and mutant ENaC were stably expressed in the FRT epithelial cell line using a tripromoter human ENaC construct, and protease-induced short-circuit current activation was measured in aprotinin-treated cells. The amiloride-sensitive short circuit current (I Na) was stimulated by aldosterone (1.5-fold) and dexamethasone (8-fold). Dexamethasone-treated cells were used for all subsequent studies. The serum protease inhibitor aprotinin decreased baseline I Na by approximately 50% and I Na could be restored to baseline control values by the exogenous addition of trypsin, NE, and porcine pancreatic elastase (PE) but not by thrombin. All protease experiments were thus performed after exposure to aprotinin. Because NE recognition of substrates occurs with a preference for binding valines at the active site, several valines in the extracellular loops of α and γ ENaC were sequentially substituted with glycines. This scan yielded two valine residues in γ ENaC at positions 182 and 193 that resulted in inhibited responses to NE when simultaneously changed to other amino acids. The mutations resulted in decreased rates of activation and decreased activated steady-state current levels. There was an ∼20-fold difference in activation efficiency of NE against wild-type ENaC compared to a mutant with glycine substitutions at positions 182 and 193. However, the mutants remain susceptible to activation by trypsin and the related elastase, PE. Alanine is the preferred P 1 position residue for PE and substitution of alanine 190 in the γ subunit eliminated I Na activation by PE. Further, substitution with a novel thrombin consensus sequence (LVPRG) beginning at residue 186 in the γ subunit (γ Th) allowed for I Na activation by thrombin, whereas wild-type ENaC was unresponsive. MALDI-TOF mass spectrometric evaluation of proteolytic digests of a 23-mer peptide encompassing the identified residues (T 176-S 198) showed that hydrolysis occurred between residues V193 and M194 for NE and between A190 and S191 for PE. In vitro translation studies demonstrated thrombin cleaved the γ Th but not the wild-type γ subunit. These results demonstrate that γ subunit valines 182 and 193 are critical for channel activation by NE, alanine 190 is critical for channel activation by PE, and that channel activation can be achieved by inserting a novel thrombin consensus sequence. These results support the conclusion that protease binding and perhaps cleavage of the γ subunit results in ENaC activation.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits.

          The amiloride-sensitive epithelial sodium channel constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is upregulated by vasopressin and aldosterone, hormones involved in the maintenance of sodium balance, blood volume and blood pressure. We have identified the primary structure of the alpha-subunit of the rat epithelial sodium channel by expression cloning in Xenopus laevis oocytes. An identical subunit has recently been reported. Here we identify two other subunits (beta and gamma) by functional complementation of the alpha-subunit of the rat epithelial Na+ channel. The ion-selective permeability, the gating properties and the pharmacological profile of the channel formed by coexpressing the three subunits in oocytes are similar to that of the native channel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial sodium channels: function, structure, and regulation.

            The apical (outward-facing) membranes of high-resistance epithelia contain Na+ channels, traditionally identified by their sensitivity to block by the K(+)-sparing diuretic amiloride. Such channels have been characterized in amphibian skin and urinary bladder, renal collecting duct, distal colon, sweat and salivary glands, lung, and taste buds. They mediate the first step of active Na+ reabsorption and play a major role in the maintenance of electrolyte and water homeostasis in all vertebrates. In the past, these channels were classified according to their biophysical and pharmacological properties. The recent cloning of the three homologous channel subunits denoted alpha-, beta-, and gamma-epithelial Na+ channels (ENaC) has provided a molecular definition of at least one class of amiloride-blockable channels. Subsequent studies have established that ENaC is a major Na(+)-conducting pathway in both absorbing and secretory epithelia and is related to one type of channel involved in mechanosensation. This review summarizes the biophysical characteristics, molecular properties, and regulatory mechanisms of epithelial amiloride-blockable Na+ channels. Special emphasis is given to recent studies utilizing cloned ENaC subunits and purified amiloride-binding proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney.

              Aldosterone stimulates sodium transport in the renal collecting duct by activating the epithelial sodium channel (ENaC). To investigate the basis of this effect, we have developed a novel set of rabbit polyclonal antibodies to the 3 subunits of ENaC and have determined the abundance and distribution of ENaC subunits in the principal cells of the rat renal collecting duct. Elevated circulating aldosterone (due to either dietary NaCl restriction or aldosterone infusion) markedly increased the abundance of alphaENaC protein without increasing the abundance of the beta and gamma subunits. Thus, alphaENaC is selectively induced by aldosterone. In addition, immunofluorescence immunolocalization showed a striking redistribution in ENaC labeling to the apical region of the collecting duct principal cells. Finally, aldosterone induced a shift in molecular weight of gammaENaC from 85 kDa to 70 kDa, consistent with physiological proteolytic clipping of the extracellular loop as postulated previously. Thus, at the protein level, the response of ENaC to aldosterone stimulation is heterogenous, with both quantitative and qualitative changes that can explain observed increases in ENaC-mediated sodium transport.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                December 2007
                : 130
                : 6
                : 611-629
                Affiliations
                [1 ]Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
                [2 ]Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
                [3 ]School of Pharmacy, Texas Tech. University Health Sciences Center, Amarillo, TX 79106
                [4 ]Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, UK
                Author notes

                Correspondence to Robert J. Bridges: bob.bridges@ 123456rosalindfranklin.edu

                Article
                200709781
                10.1085/jgp.200709781
                2151661
                17998393
                585e3f93-3b0b-4d01-99fb-fb9e01c216d6
                Copyright © 2007, The Rockefeller University Press
                History
                : 12 March 2007
                : 24 October 2007
                Categories
                Articles
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article