7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated the effects of varying levels of L-arginine ( Arg) on performance and intestinal health of broilers challenged with Eimeria. Cobb 500 male chicks ( n = 720) were randomly distributed in a 5 × 2 factorial arrangement (6 replicates/12 birds). The main factors were Arg levels (1.04, 1.14, 1.24, 1.34, 1.44%) and challenge or non-challenge with Eimeria. At day 12, in the challenge group, each bird received orally 12,500  Eimeria maxima, 12,500  Eimeria tenella, and 62,500  Eimeria acervulina sporulated oocysts. At 5 d postinfection ( dpi), intestinal permeability was measured. At 6 and 14 dpi, performance, intestinal histomorphology, nutrient digestibility, tight junction protein ( TJP) gene expression, and antioxidant markers were evaluated. Few interactions were found, and when significant, the supplementation of Arg did not counteract the negative effects of Eimeria challenge. Challenge, regardless of Arg level, increased intestinal permeability, although the expression of Claudin-1, a TJP, was upregulated. At 6 dpi, the antioxidant system was impaired by the challenge. Moreover, growth performance, intestinal histomorphology, and nutrient digestibility were negatively affected by challenge at 6 and 14 dpi. Regardless of challenge, from 0 to 14 dpi, birds fed 1.44% showed higher weight gain than 1.04% of Arg, and birds fed 1.34% showed lower feed conversion than 1.04% of Arg. At 5 dpi, intestinal permeability was improved in birds fed 1.34% than 1.04% of Arg. Moreover, 1.34% of Arg upregulated the expression of the TJP Zonula occludens-1 ( ZO-1) as compared with 1.24 and 1.44% of Arg at 6 dpi. At 14 dpi, 1.44% of Arg upregulated the expression of ZO-1 and ZO-2 compared with 1.24 and 1.34% of Arg. The nutrient digestibility was quadratically influenced by Arg, whereas the antioxidant markers were unaffected. Thus, the challenge with Eimeria had a negative impact on growth and intestinal health. The dietary supplementation of levels ranging from 1.24 to 1.44% of Arg showed promising results, improving overall growth, intestinal integrity, and morphology in broilers subjected or not to Eimeria challenge.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The intestinal barrier: a fundamental role in health and disease.

            The gastrointestinal mucosa constitutes a critical barrier where millions of microbes and environmental antigens come in close contact with the host immune system. Intestinal barrier defects have been associated with a broad range of diseases and therefore denote a new therapeutic target. Areas covered: This review is based on an extensive literature search in PubMed of how the intestinal barrier contributes to health and as a trigger for disease. It discusses the anatomy of the intestinal barrier and explains the available methods to evaluate its function. Also reviewed is the importance of diet and lifestyle factors on intestinal barrier function, and three prototypes of chronic diseases (inflammatory bowel disease, celiac disease and nonalcoholic fatty liver disease) that have been linked to barrier defects are discussed. Expert commentary: The intestinal barrier has been investigated by various methods, but correlation of results across studies is difficult, representing a major shortcoming in the field. New upcoming techniques and research on the effect of barrier-restoring therapeutics may improve our current understanding of the gut barrier, and provide a step forward towards personalised medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arginine metabolism and nutrition in growth, health and disease.

              L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                26 August 2020
                November 2020
                26 August 2020
                : 99
                : 11
                : 5844-5857
                Affiliations
                []Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
                []Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
                Author notes
                [1 ]Corresponding author: wkkim@ 123456uga.edu
                Article
                S0032-5791(20)30555-1
                10.1016/j.psj.2020.08.017
                7647855
                33142502
                5623bfd6-8824-41e0-a482-13fa60950d10
                © 2020 Published by Elsevier Inc. on behalf of Poultry Science Association Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 February 2020
                : 7 August 2020
                Categories
                Metabolism and Nutrition

                l-arginine,broiler,eimeria,intestinal health
                l-arginine, broiler, eimeria, intestinal health

                Comments

                Comment on this article