4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional role of branched chain amino acids in poultry: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review provides insight into the effects of the branched-chain amino acids ( BCAA: leucine, isoleucine, and valine) on the growth, production performance, immunity, and intestinal health of poultry. Besides providing nitrogen substrates and carbon framework for energy homeostasis and transamination, BCAA also function as signaling molecules in the regulation of glucose, lipid, and protein synthesis via protein kinase B and as a mechanistic target of the rapamycin ( AKT-mTOR) signaling pathway that is important for muscle accretion. The level of leucine is generally high in cereals and an imbalance in the ratio among the 3 BCAA in a low protein diet would produce a negative effect on poultry growth performance. This occurs due to the structural similarity of the 3 BCAA, which leads to metabolic competition and interference with the enzymatic degradation pathway. Emerging evidence shows that the inclusion of BCAA is essential for the proper functioning of the innate and adaptive immune system and the maintenance of intestinal mucosal integrity. The recommended levels of BCAA for poultry are outlined by NRC (1994), but commercial broilers and laying hen breed standards also determine their own recommended levels. In this review, it has been noted that the requirement for BCAA is influenced by the diet type, breed, and age of the birds. Additionally, several studies focused on the effects of BCAA in low protein diets as a strategy to reduce nitrogen excretion. Notably, there is limited research on the inclusion ratio of BCAA in a supplemental form as compared to the ingredient-bound form which would affect the dynamics of utilization in different disease-challenged conditions, especially those affecting digesta passage ratio. In summary, this review encompasses the role of BCAA as functional AA and discusses their physiological effects on the productivity and health of poultry. The observations and interpretations of this review can guide future research to adjust the recommended levels of BCAA in feeding programs in the absence of subtherapeutic antibiotics in poultry.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.

          Diet and nutritional status are among the most important modifiable determinants of human health. The nutritional value of food is influenced in part by a person's gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelations among diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology, and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent metagenomic analysis of the temporal, spatial, and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized and reproduced much of the bacterial diversity of the donor's microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat, high-sugar "Western" diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle "clinical trials" that test the effects of environmental and genetic factors on the gut microbiota and host physiology. Nearly full-length 16S rRNA gene sequences are deposited in GenBank under the accession numbers GQ491120 to GQ493997.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acids and immune function.

            A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal microbiome of poultry and its interaction with host and diet.

              The gastrointestinal (GI) tract of poultry is densely populated with microorganisms which closely and intensively interact with the host and ingested feed. The gut microbiome benefits the host by providing nutrients from otherwise poorly utilized dietary substrates and modulating the development and function of the digestive and immune system. In return, the host provides a permissive habitat and nutrients for bacterial colonization and growth. Gut microbiome can be affected by diet, and different dietary interventions are used by poultry producers to enhance bird growth and reduce risk of enteric infection by pathogens. There also exist extensive interactions among members of the gut microbiome. A comprehensive understanding of these interactions will help develop new dietary or managerial interventions that can enhance bird growth, maximize host feed utilization, and protect birds from enteric diseases caused by pathogenic bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                12 January 2022
                May 2022
                12 January 2022
                : 101
                : 5
                : 101715
                Affiliations
                [0001]Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
                Author notes
                [1 ]Corresponding author: wkkim@ 123456uga.edu
                Article
                S0032-5791(22)00020-7 101715
                10.1016/j.psj.2022.101715
                8927823
                35299066
                c382c322-7922-4134-8004-2e42cb867377
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 4 October 2021
                : 31 December 2021
                Categories
                METABOLISM AND NUTRITION

                branched chain amino acids,growth performance,immunity,microbiota,poultry disease

                Comments

                Comment on this article