99
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19: consider cytokine storm syndromes and immunosuppression

          As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus

            The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophil extracellular traps kill bacteria.

              Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                28 May 2020
                2020
                28 May 2020
                : 11
                : 1221
                Affiliations
                [1] 1Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool , Liverpool, United Kingdom
                [2] 2The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , Lyngby, Denmark
                [3] 3Department of Physiological Sciences, Faculty of Science, Stellenbosch University , Stellenbosch, South Africa
                [4] 4Retired , Spokane, WA, United States
                Author notes

                Edited by: Slobodan Paessler, University of Texas Medical Branch at Galveston, United States

                Reviewed by: Elena Martinelli, Population Council, United States; Zhenlong Liu, McGill University, Canada

                *Correspondence: Douglas B. Kell dbk@ 123456liv.ac.uk
                Etheresia Pretorius resiap@ 123456sun.ac.za

                This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology

                †ORCID: Douglas B. Kell orcid.org/0000-0001-5838-7963

                Etheresia Pretorius orcid.org/0000-0002-9108-2384

                Article
                10.3389/fimmu.2020.01221
                7271924
                32574271
                556a9163-9ad2-4250-92cd-b18ff84256bb
                Copyright © 2020 Kell, Heyden and Pretorius.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 April 2020
                : 15 May 2020
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 196, Pages: 15, Words: 10539
                Categories
                Immunology
                Hypothesis and Theory

                Immunology
                lactoferrin,coronaviruses,iron,membrane receptors,hspgs
                Immunology
                lactoferrin, coronaviruses, iron, membrane receptors, hspgs

                Comments

                Comment on this article