38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of sub-microscopic malaria parasite carriage with transmission intensity in north-eastern Tanzania

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In malaria endemic areas, individuals are frequently asymptomatic and may be undetected by conventional microscopy or newer, rapid diagnostic tests. Molecular techniques allow a more accurate assessment of this asymptomatic parasite burden, the extent of which is important for malaria control. This study examines the relative prevalence of sub-microscopic level parasite carriage and clonal complexity of infections (multiplicity of infection) over a range of endemicities in a region of north-eastern Tanzania where altitude is an established proxy of malaria transmission. The PCR prevalence was then compared against other measures of transmission intensity collected in the same area.

          Methods

          This study used 1,121 blood samples collected from a previously conducted cross-sectional malario-metric survey during the short rainy season in 2001 from 13 villages (three at < 600 m, four at 600-1,200 m and six at > 1,200 m in altitude above sea level). Samples were analysed by PCR for carriage of parasites and multiplicity of infection. These data were compared with other measures of transmission intensity collected from the same area.

          Results

          Parasite prevalence was 34.7% by PCR and 13.6% by microscopy; a 2.5-fold difference in line with other recent observations. This fold difference was relatively consistent at the different altitude bands despite a marked decrease in parasite prevalence with altitude: < 600 m 70.9 vs 28.6, 600-1,200 m 35.5 vs 9.9, > 1,200 m 15.8 vs 5.9. The difference between parasite prevalence by PCR was 3.2 in individuals aged between 15 and 45 years (34.5 vs 10.9) compared with 2.5 in those aged 1-5 (34.0 vs 13.5) though this was not statistically significant. Multiplicity of infection (MOI) ranged from 1.2 to 3.7 and was positively associated with parasite prevalence assessed by both PCR and microscopy. There was no association of MOI and age.

          Village level PCR parasite prevalence was strongly correlated with altitude, sero-conversion rate and predicted entomological inoculation rate.

          Conclusions

          Asymptomatic, low density, multi-clone malaria infection was common in this study area. These infections are important as potential contributors to the infectious reservoir of parasites and need to be identified by control programmes especially in this era where malaria elimination is a focus. High throughput standardized PCR approaches are needed to identify individuals who are malaria carriers.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination.

            Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies.

              A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2011
                16 December 2011
                : 10
                : 370
                Affiliations
                [1 ]Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
                [2 ]Joint Malaria Programme, Kilimanjaro Christian Medical Centre, P.O.BOX 2228, Moshi, Tanzania
                [3 ]Department of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
                Article
                1475-2875-10-370
                10.1186/1475-2875-10-370
                3276450
                22177014
                54d6a398-7e9e-4118-b314-e5a980f79ec1
                Copyright ©2011 Manjurano et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0),which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 August 2011
                : 16 December 2011
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article