Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intranasal COVID-19 vaccines: From bench to bed

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

          Summary Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen recognition and innate immunity.

            Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial

              Summary Background A vaccine to protect against COVID-19 is urgently needed. We aimed to assess the safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 (Ad5) vectored COVID-19 vaccine expressing the spike glycoprotein of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Methods We did a dose-escalation, single-centre, open-label, non-randomised, phase 1 trial of an Ad5 vectored COVID-19 vaccine in Wuhan, China. Healthy adults aged between 18 and 60 years were sequentially enrolled and allocated to one of three dose groups (5 × 1010, 1 × 1011, and 1·5 × 1011 viral particles) to receive an intramuscular injection of vaccine. The primary outcome was adverse events in the 7 days post-vaccination. Safety was assessed over 28 days post-vaccination. Specific antibodies were measured with ELISA, and the neutralising antibody responses induced by vaccination were detected with SARS-CoV-2 virus neutralisation and pseudovirus neutralisation tests. T-cell responses were assessed by enzyme-linked immunospot and flow-cytometry assays. This study is registered with ClinicalTrials.gov, NCT04313127. Findings Between March 16 and March 27, 2020, we screened 195 individuals for eligibility. Of them, 108 participants (51% male, 49% female; mean age 36·3 years) were recruited and received the low dose (n=36), middle dose (n=36), or high dose (n=36) of the vaccine. All enrolled participants were included in the analysis. At least one adverse reaction within the first 7 days after the vaccination was reported in 30 (83%) participants in the low dose group, 30 (83%) participants in the middle dose group, and 27 (75%) participants in the high dose group. The most common injection site adverse reaction was pain, which was reported in 58 (54%) vaccine recipients, and the most commonly reported systematic adverse reactions were fever (50 [46%]), fatigue (47 [44%]), headache (42 [39%]), and muscle pain (18 [17%]. Most adverse reactions that were reported in all dose groups were mild or moderate in severity. No serious adverse event was noted within 28 days post-vaccination. ELISA antibodies and neutralising antibodies increased significantly at day 14, and peaked 28 days post-vaccination. Specific T-cell response peaked at day 14 post-vaccination. Interpretation The Ad5 vectored COVID-19 vaccine is tolerable and immunogenic at 28 days post-vaccination. Humoral responses against SARS-CoV-2 peaked at day 28 post-vaccination in healthy adults, and rapid specific T-cell responses were noted from day 14 post-vaccination. Our findings suggest that the Ad5 vectored COVID-19 vaccine warrants further investigation. Funding National Key R&D Program of China, National Science and Technology Major Project, and CanSino Biologics.
                Bookmark

                Author and article information

                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Published by Elsevier B.V.
                2352-3964
                24 January 2022
                February 2022
                24 January 2022
                : 76
                : 103841
                Affiliations
                [0001]Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
                Author notes
                [* ]Corresponding authors.
                [1]

                Contributed equally to this work.

                Article
                S2352-3964(22)00025-1 103841
                10.1016/j.ebiom.2022.103841
                8785603
                35085851
                51021336-91b5-4b48-962d-51821be5aecd
                © 2022 Published by Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 23 October 2021
                : 9 January 2022
                : 12 January 2022
                Categories
                Review

                covid-19,sars-cov-2,intranasal vaccine,mucosal,adjuvant
                covid-19, sars-cov-2, intranasal vaccine, mucosal, adjuvant

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,228

                Cited by98

                Most referenced authors2,399