88
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      SARS-CoV-2 variant biology: immune escape, transmission and fitness

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed ‘variants of concern’ (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.

          Abstract

          In this Review, the authors summarize the mutations harboured by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. They describe the impact of mutations on virus infectivity and transmissibility, and discuss SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2

            The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

              A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
                Bookmark

                Author and article information

                Contributors
                david.l.robertson@glasgow.ac.uk
                Journal
                Nat Rev Microbiol
                Nat Rev Microbiol
                Nature Reviews. Microbiology
                Nature Publishing Group UK (London )
                1740-1526
                1740-1534
                18 January 2023
                : 1-16
                Affiliations
                [1 ]GRID grid.5335.0, ISNI 0000000121885934, Department of Medicine, , University of Cambridge, Addenbrookes Hospital, ; Cambridge, UK
                [2 ]GRID grid.7445.2, ISNI 0000 0001 2113 8111, Department of Infectious Disease, , St Mary’s Medical School, Imperial College London, ; London, UK
                [3 ]GRID grid.83440.3b, ISNI 0000000121901201, Division of Infection and Immunity, , University College London, ; London, UK
                [4 ]GRID grid.301713.7, ISNI 0000 0004 0393 3981, MRC-University of Glasgow Centre for Virus Research, University of Glasgow, ; Glasgow, UK
                [5 ]GRID grid.4305.2, ISNI 0000 0004 1936 7988, Roslin Institute, , University of Edinburgh, ; Edinburgh, UK
                [6 ]GRID grid.11835.3e, ISNI 0000 0004 1936 9262, Department of Infection, Immunity and Cardiovascular Disease, Medical School, , University of Sheffield, ; Sheffield, UK
                Author information
                http://orcid.org/0000-0003-3625-4021
                http://orcid.org/0000-0001-9529-1127
                http://orcid.org/0000-0003-2556-2563
                http://orcid.org/0000-0002-1718-2782
                http://orcid.org/0000-0001-6338-0221
                Article
                841
                10.1038/s41579-022-00841-7
                9847462
                36653446
                5c3dc98d-d4f5-44cd-8978-3a3f6512a319
                © Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 7 December 2022
                Categories
                Review Article

                sars-cov-2,mutation,viral genetics
                sars-cov-2, mutation, viral genetics

                Comments

                Comment on this article