Processing math: 100%
Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The BINGO project VIII: On the recoverability of the BAO signal on HI intensity mapping simulations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new and promising technique for observing the Universe and study the dark sector is the intensity mapping of the redshifted 21cm line of neutral hydrogen (HI). The BINGO radio telescope will use the 21cm line to map the Universe in the redshift range 0.127z0.449, in a tomographic approach, with the main goal of probing BAO. This work presents the forecasts of measuring the transversal BAO signal during the BINGO Phase 1 operation. We use two clustering estimators, the two-point angular correlation function (ACF) and the angular power spectrum (APS), and a template-based method to model the ACF and APS estimated from simulations of the BINGO region and extract the BAO information. The tomographic approach allows the combination of redshift bins to improve the template fitting performance. We find that each clustering estimator shows different sensitivities to specific redshift ranges, although both of them perform better at higher redshifts. In general, the APS estimator provides slightly better estimates, with smaller uncertainties and larger probability of detection of the BAO signal, achieving 90\% at higher redshifts. We investigate the contribution from instrumental noise and residual foreground signals and find that the former has the greater impact, getting more significant as the redshift increases, in particular the APS estimator. Indeed, including noise in the analysis increases the uncertainty up to a factor of 2.2 at higher redshifts. Foreground residuals, in contrast, do not significantly affect our final uncertainties. In summary, our results show that, even including semi-realistic systematic effects, BINGO has the potential to successfully measure the BAO scale in radio frequencies. (Abridged)

          Related collections

          Author and article information

          Journal
          25 July 2022
          Article
          2207.12125
          4e8b9db4-a4b6-44cd-b454-1788bce3a663

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          TUM-HEP 1386/22
          18 pages, 6 figures. Submitted to A&A
          astro-ph.CO

          Cosmology & Extragalactic astrophysics
          Cosmology & Extragalactic astrophysics

          Comments

          Comment on this article