1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation-driven epigenetic alterations as a defining hallmark of central cartilaginous tumours, giant cell tumour of bone and chondroblastoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, specific driver mutations were identified in chondroblastoma, giant cell tumour of bone and central cartilaginous tumours (specifically enchondroma and central chondrosarcoma), sharing the ability to induce genome-wide epigenetic alterations. In chondroblastoma and giant cell tumour of bone, the neoplastic mononuclear stromal-like cells frequently harbour specific point mutations in the genes encoding for histone H3.3 ( H3F3A and H3F3B). The identification of these driver mutations has led to development of novel diagnostic tools to distinguish between chondroblastoma, giant cell tumour of bone and other giant cell containing tumours. From a biological perspective, these mutations induce several global and local alterations of the histone modification marks. Similar observations are made for central cartilaginous tumours, which frequently harbour specific point mutations in the metabolic enzymes IDH1 or IDH2. Besides an altered methylation pattern on histones, IDH mutations also induce a global DNA hypermethylation phenotype. In all of these tumour types, the mutation-driven epigenetic alterations lead to a highly altered transcriptome, resulting for instance in alterations in differentiation. These genomic alterations have diagnostic impact. Further research is needed to identify the genes and signalling pathways that are affected by the epigenetic alterations, which will hopefully lead to a better understanding of the biological mechanism underlying tumourigenesis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the language of Lys36 methylation at histone H3.

          Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors

            Malignant Peripheral Nerve Sheath Tumors (MPNSTs) represent a group of highly aggressive soft tissue sarcomas that may occur sporadically, in association with neurofibromatosis type I (NF1-), or after radiotherapy 1–3 . Using comprehensive genomic approaches, we identified loss-of-function (LOF) somatic alterations of the Polycomb repressive complex 2 (PRC2) core components, EED or SUZ12, in 92% of sporadic, 70% of NF1-associated and 90% of radiotherapy-associated MPNSTs. MPNSTs with PRC2 loss showed complete loss of H3K27me3 and aberrant transcriptional activation of multiple PRC2-repressed homeobox master regulators and their regulated developmental pathways. Introduction of the PRC2 component in a PRC2-deficient MPNST cell line restored H3K27me3 and decreased cell growth. Additionally, we identified frequent somatic alterations of CDKN2A (81% of all MPNSTs) and NF1 (72% of non-NF1-associated MPNSTs), and they significantly co-occur with PRC2 alterations. The highly recurrent and specific inactivation of PRC2, NF1, CDKN2A posits their critical and potentially cooperative roles in MPNST pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma.

              Recent exon sequencing studies have revealed that over 20% of human tumors have mutations in subunits of mSWI/SNF (BAF) complexes. To investigate the underlying mechanism, we studied human synovial sarcoma (SS), in which transformation results from the translocation of exactly 78 amino acids of SSX to the SS18 subunit of BAF complexes. We demonstrate that the SS18-SSX fusion protein competes for assembly with wild-type SS18, forming an altered complex lacking the tumor suppressor BAF47 (hSNF5). The altered complex binds the Sox2 locus and reverses polycomb-mediated repression, resulting in Sox2 activation. Sox2 is uniformly expressed in SS tumors and is essential for proliferation. Increasing the concentration of wild-type SS18 leads to reassembly of wild-type complexes retargeted away from the Sox2 locus, polycomb-mediated repression of Sox2, and cessation of proliferation. This mechanism of transformation depends on only two amino acids of SSX, providing a potential foundation for therapeutic intervention. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                J.V.M.G.Bovee@lumc.nl
                Journal
                Virchows Arch
                Virchows Arch
                Virchows Archiv
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0945-6317
                1432-2307
                14 November 2019
                14 November 2019
                2020
                : 476
                : 1
                : 135-146
                Affiliations
                [1 ]GRID grid.10419.3d, ISNI 0000000089452978, Department of Pathology, , Leiden University Medical Center, ; Leiden, The Netherlands
                [2 ]GRID grid.10419.3d, ISNI 0000000089452978, Department of Cell and Chemical Biology, , Leiden University Medical Center, ; Leiden, The Netherlands
                Author information
                http://orcid.org/0000-0003-1155-0481
                Article
                2699
                10.1007/s00428-019-02699-2
                6968983
                31728625
                4b3d1cd6-1146-4196-95f5-5dc8839ba2c6
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 July 2019
                : 7 October 2019
                : 16 October 2019
                Funding
                Funded by: Leiden University Medical Center (LUMC)
                Categories
                Review Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2020

                Pathology
                bone neoplasm,chondrosarcoma,giant cell tumour of bone,chondroblastoma,idh mutations,histone h3.3 variants

                Comments

                Comment on this article