1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes

      , , , , ,
      Frontiers in Environmental Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microplastic (MP) pollution poses a threat to agricultural soils and may induce a significant loss of the soil quality and services provided by these ecosystems. Studies in marine environments suggest that this impact is mediated by shifts in the microbiome. However, studies on the mode of action of MP materials on the soil microbiome are rare, particularly when comparing the effects of different MP materials. In this study, we characterized the microbiota colonizing two different MP materials, granules made of polypropylene (PP) and expanded polystyrene (ePS), introduced into arable soil and incubated for 8 weeks using a molecular barcoding approach. We further assessed the consequences on the microbiome of bulk soil. The complexity of the bacterial communities colonizing MP materials was significantly higher on ePS compared to PP. Many of the detected genera colonizing the MP materials belonged to taxa, that are known to degrade polymeric substances, including TM7a, Phenylobacterium, Nocardia, Arthrobacter and Streptomyces. Interestingly, in bulk soil samples amended with MP materials, microbial diversity was higher after 8 weeks compared to the control soil, which was incubated without MP materials. The composition of bacterial communities colonizing the MP materials and bulk soil differed. Mainly Acidobacteria were mostly found in bulk soil, whereas they were rare colonizers of the MP materials. Differences in diversity and community composition between the MP affected bulk soil samples were not found. Overall, our data indicate that MP materials form a new niche for microbes in soil, with a specific community composition depending on the materials used, strongly influencing the bulk soil microbiota in the short term. Long-term consequences for the soil microbiome and associated functions including different soils need to be further elaborated in the future for a proper risk assessment of the mode of action of MP materials in terrestrial ecosystems.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cutadapt removes adapter sequences from high-throughput sequencing reads

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples.

              Microbial community analysis via high-throughput sequencing of amplified 16S rRNA genes is an essential microbiology tool. We found the popular primer pair 515F (515F-C) and 806R greatly underestimated (e.g. SAR11) or overestimated (e.g. Gammaproteobacteria) common marine taxa. We evaluated marine samples and mock communities (containing 11 or 27 marine 16S clones), showing alternative primers 515F-Y (5'-GTGYCAGCMGCCGCGGTAA) and 926R (5'-CCGYCAATTYMTTTRAGTTT) yield more accurate estimates of mock community abundances, produce longer amplicons that can differentiate taxa unresolvable with 515F-C/806R, and amplify eukaryotic 18S rRNA. Mock communities amplified with 515F-Y/926R yielded closer observed community composition versus expected (r(2)  = 0.95) compared with 515F-Y/806R (r(2)  ∼ 0.5). Unexpectedly, biases with 515F-Y/806R against SAR11 in field samples (∼4-10-fold) were stronger than in mock communities (∼2-fold). Correcting a mismatch to Thaumarchaea in the 515F-C increased their apparent abundance in field samples, but not as much as using 926R rather than 806R. With plankton samples rich in eukaryotic DNA (> 1 μm size fraction), 18S sequences averaged ∼17% of all sequences. A single mismatch can strongly bias amplification, but even perfectly matched primers can exhibit preferential amplification. We show that beyond in silico predictions, testing with mock communities and field samples is important in primer selection.
                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                August 26 2022
                August 26 2022
                : 10
                Article
                10.3389/fenvs.2022.989267
                4ace035f-2379-4a3a-8297-e335e22a10fc
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article