79
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in Yersinia pestis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.

          Author Summary

          Bubonic plague cycles depend on the ability of Yersinia pestis to alternately infect two very different hosts—a mammal and a flea. Like any arthropod-borne pathogen, Y. pestis must sense host-specific environmental cues and regulate gene expression accordingly to produce a transmissible infection in the flea after being taken up in a blood meal, and again when it exits the flea and enters the mammal. We examined the Y. pestis phenotype at the point of transmission by in vivo gene expression analyses, the first description of the transcriptome of an arthropod-borne bacterium in its vector. In addition to genes associated with physiological adaptation to the flea gut, several Y. pestis virulence factors required for resistance to innate immunity and dissemination in the mammal were induced in the flea, suggesting that the arthropod life stage primes Y. pestis for successful infection of the mammal.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological heterogeneity in biofilms.

          Biofilms contain bacterial cells that are in a wide range of physiological states. Within a biofilm population, cells with diverse genotypes and phenotypes that express distinct metabolic pathways, stress responses and other specific biological activities are juxtaposed. The mechanisms that contribute to this genetic and physiological heterogeneity include microscale chemical gradients, adaptation to local environmental conditions, stochastic gene expression and the genotypic variation that occurs through mutation and selection. Here, we discuss the processes that generate chemical gradients in biofilms, the genetic and physiological responses of the bacteria as they adapt to these gradients and the techniques that can be used to visualize and measure the microscale physiological heterogeneities of bacteria in biofilms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Yersinia pestis--etiologic agent of plague.

            Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system.

              The skin commensal and opportunistic pathogen Staphylococcus epidermidis is the leading cause of nosocomial and biofilm-associated infections. Little is known about the mechanisms by which S. epidermidis protects itself against the innate human immune system during colonization and infection. We used scanning electron microscopy to demonstrate that the exopolysaccharide intercellular adhesin (PIA) resides in fibrous strands on the bacterial cell surface, and that lack of PIA production results in complete loss of the extracellular matrix material that has been suggested to mediate immune evasion. Phagocytosis and killing by human polymorphonuclear leucocytes was significantly increased in a mutant strain lacking PIA production compared with the wild-type strain. The mutant strain was also significantly more susceptible to killing by major antibacterial peptides of human skin, cationic human beta-defensin 3 and LL-37, and anionic dermcidin. PIA represents the first defined factor of the staphylococcal biofilm matrix that protects against major components of human innate host defence.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2010
                February 2010
                26 February 2010
                : 6
                : 2
                : e1000783
                Affiliations
                [1 ]Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [2 ]Genomics Unit, Research Technologies Section; Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [3 ]Institut National de la Santé et de la Recherche Médicale U801, Institut Pasteur de Lille, and Université Lille Nord de France, Lille, France
                University of Toronto, Canada
                Author notes
                [¤]

                Current address: Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington, United States of America

                Conceived and designed the experiments: VV DES FS BJH. Performed the experiments: VV CJ BJH. Analyzed the data: VV CJ DES FS BJH. Contributed reagents/materials/analysis tools: DES FS. Wrote the paper: VV DES BJH.

                Article
                09-PLPA-RA-0881R2
                10.1371/journal.ppat.1000783
                2829055
                20195507
                367e88e3-3d08-46fa-8d05-0b8b95b75449
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 4 June 2009
                : 20 January 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Evolutionary Biology
                Genetics and Genomics
                Genetics and Genomics/Functional Genomics
                Genetics and Genomics/Gene Expression
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Innate Immunity
                Microbiology/Microbial Evolution and Genomics
                Microbiology/Microbial Physiology and Metabolism

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article