47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Experimental realization of the topological Haldane model with ultracold fermions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Haldane model on a honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band structure, rather than being caused by an external magnetic field. Although physical implementation has been considered unlikely, the Haldane model has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors. Here we report the experimental realization of the Haldane model and the characterization of its topological band structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The Haldane model is based on breaking both time-reversal symmetry and inversion symmetry. To break time-reversal symmetry, we introduce complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position. To break inversion symmetry, we create an energy offset between neighbouring sites. Breaking either of these symmetries opens a gap in the band structure, which we probe using momentum-resolved interband transitions. We explore the resulting Berry curvatures, which characterize the topology of the lowest band, by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between the two broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and quantitatively compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows us to tune the topological properties dynamically, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realize spin-dependent topological Hamiltonians.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum Spin Hall Effect in Graphene

          We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dynamic localization of a charged particle moving under the influence of an electric field

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Photovoltaic Hall effect in graphene

                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                November 2014
                November 12 2014
                November 2014
                : 515
                : 7526
                : 237-240
                Article
                10.1038/nature13915
                25391960
                48c5b6f8-0493-4b82-a6c4-dbf1a399a115
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article