85
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Functional Characterization of a Complex between the Acidic Transactivation Domain of EBNA2 and the Tfb1/p62 Subunit of TFIIH

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431–487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448–471 (EBNA2 448–471) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2 448–471 complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2 448–471 complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of intrinsically disordered acidic TADs in recognizing common target host proteins.

          Author Summary

          Infection with the Epstein-Barr virus (EBV) is linked to a number of human diseases and the nuclear antigen EBNA2 is one of nine viral latent proteins that plays a key role in EBV-linked diseases. EBNA2 activates expression of both viral and host gene in part through interaction between its C-terminal acidic transactivation domain (TAD) and a number of host transcriptional regulatory proteins including the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP/p300. In this manuscript, we demonstrate that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain from the Tfb1/p62 subunit of TFIIH and determine a three-dimensional structure of a complex between EBNA2 and Tfb1/p62. The structure shows that three hydrophobic residues from the TAD of EBNA2 make key interactions at the complex interface and these same residues also play an important role in the binding to CBP/p300. Comparison of the structure of the EBNA2-Tfb1 complex with complexes containing acidic TADs from other proteins (p53 and VP16) bound to the same Tfb1/p62 target highlights the inherent versatility of these intrinsically disordered domains and how minor variations in positioning of key hydrophobic residues allows them to bind to common targets using different functional interfaces.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.

          A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ(1) rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MOLMOL: a program for display and analysis of macromolecular structures.

            MOLMOL is a molecular graphics program for display, analysis, and manipulation of three-dimensional structures of biological macromolecules, with special emphasis on nuclear magnetic resonance (NMR) solution structures of proteins and nucleic acids. MOLMOL has a graphical user interface with menus, dialog boxes, and on-line help. The display possibilities include conventional presentation, as well as novel schematic drawings, with the option of combining different presentations in one view of a molecule. Covalent molecular structures can be modified by addition or removal of individual atoms and bonds, and three-dimensional structures can be manipulated by interactive rotation about individual bonds. Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, checking and displaying violations of NMR constraints, and identification and listing of short distances between pairs of hydrogen atoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EBV persistence in memory B cells in vivo.

              Epstein-Barr virus establishes latency in vitro by activating human B cells to become proliferating blasts, but in vivo it is benign. In the peripheral blood, the virus resides latently in resting B cells that we now show are restricted to the sIgD memory subset. However, in tonsils the virus shows no such restriction. We propose that EBV indiscriminately infects B cells in mucosal lymphoid tissue and that these cells differentiate to become resting memory B cells that then enter the circulation. Activation to the blastoid stage of latency is an essential intermediate step in this process. Thus, EBV may persist by exploiting the mechanisms that produce and maintain long-term B cell memory.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2014
                27 March 2014
                : 10
                : 3
                : e1004042
                Affiliations
                [1 ]Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
                [2 ]Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
                Wistar Institute, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PRC LR MLP TM GA JA JGO. Performed the experiments: PCR LR MLP TM GA. Analyzed the data: PCR LR MLP TM GA JGO. Contributed reagents/materials/analysis tools: PRC LR MLP TM GA JA JGO. Wrote the paper: PRC LR JA JGO.

                Article
                PPATHOGENS-D-13-02816
                10.1371/journal.ppat.1004042
                3968163
                24675874
                47c9af22-de63-4de6-b8c4-6d2a8cc13874
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 October 2013
                : 15 February 2014
                Page count
                Pages: 12
                Funding
                This work was funded by the Canadian Institutes of Health Research ( http://www.cihrirsc.gc.ca/e/193.html) grant MOP-74739 (JGO), the Canadian Cancer Society ( http://www.cancer.ca/research) grant #19630 (JGO) and the Cancer Research Society (JA) ( http://www.crs-src.ca/). PRC was supported in part by a CREATE fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC) ( http://www.nserc-crsng.gc.ca/). The microcalorimeter was purchased with funds from NSERC ( http://www.nserc-crsng.gc.ca/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Biomacromolecule-Ligand Interactions
                Chemical Biology
                Protein Chemistry
                Biophysics
                Molecular Biology
                Molecular Complexes
                Physical Sciences
                Chemistry

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article