0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Silica nanoparticles mediated insect pest management

      , , ,
      Pesticide Biochemistry and Physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlled growth of monodisperse silica spheres in the micron size range

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silicon uptake and accumulation in higher plants.

            Silicon (Si) accumulation differs greatly between plant species because of differences in Si uptake by the roots. Recently, a gene encoding a Si uptake transporter in rice, a typical Si-accumulating plant, was isolated. The beneficial effects of Si are mainly associated with its high deposition in plant tissues, enhancing their strength and rigidity. However, Si might play an active role in enhancing host resistance to plant diseases by stimulating defense reaction mechanisms. Because many plants are not able to accumulate Si at high enough levels to be beneficial, genetically manipulating the Si uptake capacity of the root might help plants to accumulate more Si and, hence, improve their ability to overcome biotic and abiotic stresses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of nanoparticles with edible plants and their possible implications in the food chain.

              The uptake, bioaccumulation, biotransformation, and risks of nanomaterials (NMs) for food crops are still not well understood. Very few NMs and plant species have been studied, mainly at the very early growth stages of the plants. Most of the studies, except one with multiwalled carbon nanotubes performed on the model plant Arabidopsis thaliana and another with ZnO nanoparticles (NPs) on ryegrass, reported the effect of NMs on seed germination or 15-day-old seedlings. Very few references describe the biotransformation of NMs in food crops, and the possible transmission of the NMs to the next generation of plants exposed to NMs is unknown. The possible biomagnification of NPs in the food chain is also unknown.
                Bookmark

                Author and article information

                Journal
                Pesticide Biochemistry and Physiology
                Pesticide Biochemistry and Physiology
                00483575
                August 2023
                August 2023
                : 194
                : 105524
                Article
                10.1016/j.pestbp.2023.105524
                37532341
                4676cbf0-7985-4a50-8480-09d75892c69a
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article