7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host mitochondria: more than an organelle in SARS-CoV-2 infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          The trinity of COVID-19: immunity, inflammation and intervention

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract — severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autopsy Findings and Venous Thromboembolism in Patients With COVID-19

            Background: The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS–CoV-2), has caused more than 210 000 deaths worldwide. However, little is known about the causes of death and the virus's pathologic features. Objective: To validate and compare clinical findings with data from medical autopsy, virtual autopsy, and virologic tests. Design: Prospective cohort study. Setting: Autopsies performed at a single academic medical center, as mandated by the German federal state of Hamburg for patients dying with a polymerase chain reaction–confirmed diagnosis of COVID-19. Patients: The first 12 consecutive COVID-19–positive deaths. Measurements: Complete autopsy, including postmortem computed tomography and histopathologic and virologic analysis, was performed. Clinical data and medical course were evaluated. Results: Median patient age was 73 years (range, 52 to 87 years), 75% of patients were male, and death occurred in the hospital (n = 10) or outpatient sector (n = 2). Coronary heart disease and asthma or chronic obstructive pulmonary disease were the most common comorbid conditions (50% and 25%, respectively). Autopsy revealed deep venous thrombosis in 7 of 12 patients (58%) in whom venous thromboembolism was not suspected before death; pulmonary embolism was the direct cause of death in 4 patients. Postmortem computed tomography revealed reticular infiltration of the lungs with severe bilateral, dense consolidation, whereas histomorphologically diffuse alveolar damage was seen in 8 patients. In all patients, SARS–CoV-2 RNA was detected in the lung at high concentrations; viremia in 6 of 10 and 5 of 12 patients demonstrated high viral RNA titers in the liver, kidney, or heart. Limitation: Limited sample size. Conclusion: The high incidence of thromboembolic events suggests an important role of COVID-19–induced coagulopathy. Further studies are needed to investigate the molecular mechanism and overall clinical incidence of COVID-19–related death, as well as possible therapeutic interventions to reduce it. Primary Funding Source: University Medical Center Hamburg-Eppendorf.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis

              Background An epidemic of Coronavirus Disease 2019 (COVID-19) began in December 2019 and triggered a Public Health Emergency of International Concern (PHEIC). We aimed to find risk factors for the progression of COVID-19 to help reducing the risk of critical illness and death for clinical help. Methods The data of COVID-19 patients until March 20, 2020 were retrieved from four databases. We statistically analyzed the risk factors of critical/mortal and non-critical COVID-19 patients with meta-analysis. Results Thirteen studies were included in Meta-analysis, including a total number of 3027 patients with SARS-CoV-2 infection. Male, older than 65, and smoking were risk factors for disease progression in patients with COVID-19 (male: OR = 1.76, 95% CI (1.41, 2.18), P 40U/L, creatinine(Cr) ≥ 133mol/L, hypersensitive cardiac troponin I(hs-cTnI) > 28pg/mL, procalcitonin(PCT) > 0.5ng/mL, lactatede hydrogenase(LDH) > 245U/L, and D-dimer > 0.5mg/L predicted the deterioration of disease while white blood cells(WBC) 40U/L:OR=4.00, 95% CI (2.46, 6.52), P 28 pg/mL: OR = 43.24, 95% CI (9.92, 188.49), P 0.5 ng/mL: OR = 43.24, 95% CI (9.92, 188.49), P 245U/L: OR = 43.24, 95% CI (9.92, 188.49), P 0.5mg/L: OR = 43.24, 95% CI (9.92, 188.49), P < 0.00001; WBC < 4 × 109/L: OR = 0.30, 95% CI (0.17, 0.51), P < 0.00001]. Conclusion Male, aged over 65, smoking patients might face a greater risk of developing into the critical or mortal condition and the comorbidities such as hypertension, diabetes, cardiovascular disease, and respiratory diseases could also greatly affect the prognosis of the COVID-19. Clinical manifestation such as fever, shortness of breath or dyspnea and laboratory examination such as WBC, AST, Cr, PCT, LDH, hs-cTnI and D-dimer could imply the progression of COVID-19.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                25 August 2023
                2023
                25 August 2023
                : 13
                : 1228275
                Affiliations
                [1] 1 Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences , Tehran, Iran
                [2] 2 Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran, Iran
                [3] 3 Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center , Memphis, TN, United States
                [4] 4 Children’s Foundation Research Institute , Memphis, TN, United States
                [5] 5 Department of Virology, Pasteur Institute of Iran , Tehran, Iran
                [6] 6 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences , Tehran, Iran
                Author notes

                Edited by: Sounak Ghosh Roy, Ph.D., Henry M Jackson Foundation for the Advancement of Military Medicine (HJF), United States

                Reviewed by: Juan C. Hernandez, Cooperative University of Colombia, Colombia; Bhaskar Saha, University of New Mexico, United States; Rishi Bhardwaj, Yale University, United States

                *Correspondence: Seyed Reza Mohebbi, sr.mohebbi@ 123456sbmu.ac.ir

                †ORCID: Seyed Reza Mohebbi, orcid.org/0000-0002-7020-7889

                Article
                10.3389/fcimb.2023.1228275
                10485703
                37692170
                46414c8c-6389-4e9c-9c22-19e090d4a688
                Copyright © 2023 Shoraka, Samarasinghe, Ghaemi and Mohebbi

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 May 2023
                : 07 August 2023
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 164, Pages: 15, Words: 7745
                Categories
                Cellular and Infection Microbiology
                Review
                Custom metadata
                Virus and Host

                Infectious disease & Microbiology
                coronavirus,sars-cov-2,covid-19,mitochondria,viral infection
                Infectious disease & Microbiology
                coronavirus, sars-cov-2, covid-19, mitochondria, viral infection

                Comments

                Comment on this article