168
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase ( ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.

          Author Summary

          Rhizopus oryzae is a widely dispersed fungus that can cause fatal infections in people with suppressed immune systems, especially diabetics or organ transplant recipients. Antibiotic therapy alone is rarely curative, particularly in patients with disseminated infection. We sequenced the genome of a pathogenic R. oryzae strain and found evidence that the entire genome had been duplicated at some point in its evolution and retained two copies of three extremely sophisticated systems involved in energy generation and utilization. The ancient whole-genome duplication, together with recent gene duplications, has led to the expansion of gene families related to pathogen virulence, fungal-specific cell wall synthesis, and signal transduction, which may contribute to the aggressive and frequently life-threatening growth of this organism. We also identified cell wall synthesis enzymes, essential for fungal cell integrity but absent in mammals, which may present potential targets for developing novel diagnostic and therapeutic treatments. R. oryzae represents the first sequenced fungus from the early lineages of the fungal phylogenetic tree, and thus the genome sequence sheds light on the evolution of the entire fungal kingdom.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Dosage sensitivity and the evolution of gene families in yeast.

          According to what we term the balance hypothesis, an imbalance in the concentration of the subcomponents of a protein-protein complex can be deleterious. If so, there are two consequences: first, both underexpression and overexpression of protein complex subunits should lower fitness, and second, the accuracy of transcriptional co-regulation of subunits should reflect the deleterious consequences of imbalance. Here we show that all these predictions are upheld in yeast (Saccharomyces cerevisiae). This supports the hypothesis that dominance is a by-product of physiology and metabolism rather than the result of selection to mask the deleterious effects of mutations. Beyond this, single-gene duplication of protein subunits is expected to be harmful, as this, too, leads to imbalance. As then expected, we find that members of large gene families are rarely involved in complexes. The balance hypothesis therefore provides a single theoretical framework for understanding components both of dominance and of gene family size.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classification and evolution of P-loop GTPases and related ATPases.

            Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.

              We have sequenced and annotated the genome of the filamentous ascomycete Ashbya gossypii. With a size of only 9.2 megabases, encoding 4718 protein-coding genes, it is the smallest genome of a free-living eukaryote yet characterized. More than 90% of A. gossypii genes show both homology and a particular pattern of synteny with Saccharomyces cerevisiae. Analysis of this pattern revealed 300 inversions and translocations that have occurred since divergence of these two species. It also provided compelling evidence that the evolution of S. cerevisiae included a whole genome duplication or fusion of two related species and showed, through inferred ancient gene orders, which of the duplicated genes lost one copy and which retained both copies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2009
                July 2009
                3 July 2009
                : 5
                : 7
                : e1000549
                Affiliations
                [1 ]The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
                [2 ]Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
                [3 ]Bioproducts and Biocatalysis Research, National Center for Agricultural Utilization Research, USDA-ARS, Midwest Area, Peoria, Illinois, United States of America
                [4 ]Department of Biochemistry, Université de Montréal, Montreal, Canada
                [5 ]Department of Biochemistry, University of Otago, Otago, New Zealand
                [6 ]Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
                [7 ]Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri, United States of America
                [8 ]Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
                [9 ]Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
                [10 ]Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
                [11 ]Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
                [12 ]Department of Plant Biology, University of California Davis, Davis, California, United States of America
                [13 ]Cambridge Institute for Medical Research, Cambridge, United Kingdom
                [14 ]Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
                University of California San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: LJM CS BWB BLW. Performed the experiments: LJM BFL TS AA JF. Analyzed the data: LJM ASI MGG GB MB ME AI TS SEC LMC WH JMK BL DMS LOC RP JRR JRH YQS CAC. Contributed reagents/materials/analysis tools: ASI CS MGG BFL RE CDK MJK SO QZ JG BLW. Wrote the paper: LJM ASI CS ME AI BL CAC BLW.

                Article
                09-PLGE-RA-0147R2
                10.1371/journal.pgen.1000549
                2699053
                19578406
                44ef93b5-3d3a-4b38-8517-6e376d6d6502
                Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 January 2009
                : 4 June 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Computational Biology/Comparative Sequence Analysis
                Computational Biology/Genomics
                Evolutionary Biology/Genomics
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Genome Projects
                Infectious Diseases/Fungal Infections
                Microbiology/Medical Microbiology
                Microbiology/Microbial Evolution and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article