3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      UPLC-MS/MS Method for Simultaneous Determination of 14 Antimicrobials in Human Plasma and Cerebrospinal Fluid: Application to Therapeutic Drug Monitoring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmacokinetics/pharmacodynamics is the foundation for guiding the rational application of antibiotics in clinical practice, so it is necessary to establish quantitative methods for accurate drug concentration determination. This study aimed to develop a rapid and simple ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneous quantification of 14 antibiotics (amikacin, etimicin, ceftazidime, cefepime, cefoperazone, ceftriaxone, daptomycin, latamoxef, linezolid, meropenem, biapenem, ampicillin, norvancomycin, and vancomycin) in human plasma and cerebrospinal fluid. Antibiotics were chromatographically separated on a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 50 mm, 1.7  μm) via gradient elution within 3 minutes and were monitored using positive ion fitted with multiple reaction monitoring. The lower limit of quantification was 0.05–2.0  μg·mL −1. The method was verified according to the FDA bioanalysis method validation guidelines, which showed excellent accuracy (from 86.75% to 110.85%) and precision (from 0.46% to 10.97%). At last, this method was successfully applied to therapeutic drug monitoring in 113 patients under antibiotics treatment.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper #

          Purpose This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic outcomes in critically ill adult patients. Methods Literature review and analysis were performed by Panel Members nominated by the endorsing organisations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimicrobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically for different antimicrobials/classes. Results TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole in critically ill patients. Conclusion Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers need to be addressed before routine TDM can be widely employed worldwide. Electronic supplementary material The online version of this article (10.1007/s00134-020-06050-1) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis*

            The Infectious Diseases Society of America (IDSA) Standards and Practice Guidelines Committee collaborated with partner organizations to convene a panel of 10 experts on healthcare-associated ventriculitis and meningitis. The panel represented pediatric and adult specialists in the field of infectious diseases and represented other organizations whose members care for patients with healthcare-associated ventriculitis and meningitis (American Academy of Neurology, American Association of Neurological Surgeons, and Neurocritical Care Society). The panel reviewed articles based on literature reviews, review articles and book chapters, evaluated the evidence and drafted recommendations. Questions were reviewed and approved by panel members. Subcategories were included for some questions based on specific populations of patients who may develop healthcare-associated ventriculitis and meningitis after the following procedures or situations: cerebrospinal fluid shunts, cerebrospinal fluid drains, implantation of intrathecal infusion pumps, implantation of deep brain stimulation hardware, and general neurosurgery and head trauma. Recommendations were followed by the strength of the recommendation and the quality of the evidence supporting the recommendation. Many recommendations, however, were based on expert opinion because rigorous clinical data are not available. These guidelines represent a practical and useful approach to assist practicing clinicians in the management of these challenging infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions.

              Infections in critically ill patients are associated with persistently poor clinical outcomes. These patients have severely altered and variable antibiotic pharmacokinetics and are infected by less susceptible pathogens. Antibiotic dosing that does not account for these features is likely to result in suboptimum outcomes. In this Review, we explore the challenges related to patients and pathogens that contribute to inadequate antibiotic dosing and discuss how to implement a process for individualised antibiotic therapy that increases the accuracy of dosing and optimises care for critically ill patients. To improve antibiotic dosing, any physiological changes in patients that could alter antibiotic concentrations should first be established; such changes include altered fluid status, changes in serum albumin concentrations and renal and hepatic function, and microvascular failure. Second, antibiotic susceptibility of pathogens should be confirmed with microbiological techniques. Data for bacterial susceptibility could then be combined with measured data for antibiotic concentrations (when available) in clinical dosing software, which uses pharmacokinetic/pharmacodynamic derived models from critically ill patients to predict accurately the dosing needs for individual patients. Individualisation of dosing could optimise antibiotic exposure and maximise effectiveness. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Anal Methods Chem
                J Anal Methods Chem
                jamc
                Journal of Analytical Methods in Chemistry
                Hindawi
                2090-8865
                2090-8873
                2022
                5 January 2022
                : 2022
                : 7048605
                Affiliations
                1Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
                2Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou 450052, China
                Author notes

                Academic Editor: Mohamed Abdel-Rehim

                Author information
                https://orcid.org/0000-0002-2113-6578
                https://orcid.org/0000-0002-3264-4092
                Article
                10.1155/2022/7048605
                8754666
                35036023
                41b9750a-2b02-4f3a-a02d-b8c40e782362
                Copyright © 2022 Huiting Sun et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2021
                : 9 December 2021
                : 18 December 2021
                Funding
                Funded by: National Basic Research Program of China (973 Program)
                Award ID: 2020YFC2008304
                Funded by: National Natural Science Foundation of China
                Award ID: 81703799
                Award ID: 81803638
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article

                scite_

                Similar content81

                Cited by7

                Most referenced authors272