12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expansion of the phenotypic spectrum and description of molecular findings in a cohort of patients with oculocutaneous mosaic RASopathies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Postzygotic KRAS, HRAS, NRAS, and FGFR1 mutations result in a group of mosaic RASopathies characterized by related developmental anomalies in eye, skin, heart, and brain. These oculocutaneous disorders include oculoectodermal syndrome (OES) encephalo‐cranio‐cutaneous lipomatosis (ECCL), and Schimmelpenning‐Feuerstein‐Mims syndrome (SFMS). Here, we report the results of the clinical and molecular characterization of a novel cohort of patients with oculocutaneous mosaic RASopathies.

          Methods

          Two OES, two ECCL, and two SFMS patients were ascertained in the study. In addition, two subjects with unilateral isolated epibulbar dermoids were also enrolled. Molecular analysis included PCR amplification and Sanger sequencing of KRAS, HRAS, NRAS, and FGFR1 genes in DNA obtained from biopsies (skin/epibulbar dermoids), buccal mucosa, and blood leukocytes. Massive parallel sequencing was employed in two cases with low‐level mosaicism.

          Results

          In DNA from biopsies, mosaicism for pathogenic variants, including KRAS p.Ala146Thr in two OES subjects, FGFR1 p.Asn546Lys and KRAS p.Ala146Val in ECCL patients, and KRAS p.Gly12Asp in both SFMS patients, was demonstrated. No mutations were shown in DNA from conjunctival lesions in two subjects with isolated epibubar dermoids.

          Conclusion

          Our study allowed the expansion of the clinical spectrum of mosaic RASopathies and supports that mosaicism for recurrent mutations in KRAS and FGFR1 is a commonly involved mechanism in these rare oculocutaneous anomalies.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Activating mutations of the stimulatory G protein in the McCune-Albright syndrome.

          The McCune-Albright syndrome is a sporadic disease characterized by polyostotic fibrous dysplasia, café au lait spots, sexual precocity, and hyperfunction of multiple endocrine glands. These manifestations may be explained by a somatic mutation in affected tissues that results in activation of the signal-transduction pathway generating cyclic AMP (cAMP). We analyzed DNA from tissues of patients with the McCune-Albright syndrome for the presence of activating mutations of the gene for the alpha subunit of the G protein (Gs alpha) that stimulates cAMP formation. Genomic DNA fragments encompassing regions (exons 8 and 9) previously found to contain activating missense mutations of the Gs alpha gene (gsp mutations) in sporadically occurring pituitary tumors were amplified in tissues from four patients with the McCune-Albright syndrome by the polymerase chain reaction. The amplified DNA was analyzed for mutations by denaturing gradient gel electrophoresis and allele-specific oligonucleotide hybridization. We detected one of two activating mutations within exon 8 of the Gs alpha gene in tissues from all four patients, including affected endocrine organs (gonads, adrenal glands, thyroid, and pituitary) and tissues not classically involved in the McCune-Albright syndrome. In two of the patients, histidine was substituted for arginine at position 201 of Gs alpha, and in the other two patients cysteine was substituted for the same arginine residue. In each patient the proportion of cells affected varied from tissue to tissue. In two endocrine organs, the highest proportion of mutant alleles was found in regions of abnormal cell proliferation. Mutations within exon 8 of the Gs alpha gene that result in increased activity of the Gs protein and increased cAMP formation are present in various tissues of patients with the McCune-Albright syndrome. Somatic mutation of this gene early in embryogenesis could result in the mosaic population of normal and mutant-bearing tissues that may underlie the clinical manifestations of this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ.

            The Sturge-Weber syndrome is a sporadic congenital neurocutaneous disorder characterized by a port-wine stain affecting the skin in the distribution of the ophthalmic branch of the trigeminal nerve, abnormal capillary venous vessels in the leptomeninges of the brain and choroid, glaucoma, seizures, stroke, and intellectual disability. It has been hypothesized that somatic mosaic mutations disrupting vascular development cause both the Sturge-Weber syndrome and port-wine stains, and the severity and extent of presentation are determined by the developmental time point at which the mutations occurred. To date, no such mutation has been identified. We performed whole-genome sequencing of DNA from paired samples of visibly affected and normal tissue from 3 persons with the Sturge-Weber syndrome. We tested for the presence of a somatic mosaic mutation in 97 samples from 50 persons with the Sturge-Weber syndrome, a port-wine stain, or neither (controls), using amplicon sequencing and SNaPshot assays, and investigated the effects of the mutation on downstream signaling, using phosphorylation-specific antibodies for relevant effectors and a luciferase reporter assay. We identified a nonsynonymous single-nucleotide variant (c.548G→A, p.Arg183Gln) in GNAQ in samples of affected tissue from 88% of the participants (23 of 26) with the Sturge-Weber syndrome and from 92% of the participants (12 of 13) with apparently nonsyndromic port-wine stains, but not in any of the samples of affected tissue from 4 participants with an unrelated cerebrovascular malformation or in any of the samples from the 6 controls. The prevalence of the mutant allele in affected tissues ranged from 1.0 to 18.1%. Extracellular signal-regulated kinase activity was modestly increased during transgenic expression of mutant Gαq. The Sturge-Weber syndrome and port-wine stains are caused by a somatic activating mutation in GNAQ. This finding confirms a long-standing hypothesis. (Funded by the National Institutes of Health and Hunter's Dream for a Cure Foundation.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peutz-Jeghers syndrome: a systematic review and recommendations for management.

              Peutz-Jeghers syndrome (PJS, MIM175200) is an autosomal dominant condition defined by the development of characteristic polyps throughout the gastrointestinal tract and mucocutaneous pigmentation. The majority of patients that meet the clinical diagnostic criteria have a causative mutation in the STK11 gene, which is located at 19p13.3. The cancer risks in this condition are substantial, particularly for breast and gastrointestinal cancer, although ascertainment and publication bias may have led to overestimates in some publications. Current surveillance protocols are controversial and not evidence-based, due to the relative rarity of the condition. Initially, endoscopies are more likely to be done to detect polyps that may be a risk for future intussusception or obstruction rather than cancers, but surveillance for the various cancers for which these patients are susceptible is an important part of their later management. This review assesses the current literature on the clinical features and management of the condition, genotype-phenotype studies, and suggested guidelines for surveillance and management of individuals with PJS. The proposed guidelines contained in this article have been produced as a consensus statement on behalf of a group of European experts who met in Mallorca in 2007 and who have produced guidelines on the clinical management of Lynch syndrome and familial adenomatous polyposis.
                Bookmark

                Author and article information

                Contributors
                jczenteno@institutodeoftalmologia.org
                Journal
                Mol Genet Genomic Med
                Mol Genet Genomic Med
                10.1002/(ISSN)2324-9269
                MGG3
                Molecular Genetics & Genomic Medicine
                John Wiley and Sons Inc. (Hoboken )
                2324-9269
                19 March 2019
                May 2019
                : 7
                : 5 ( doiID: 10.1002/mgg3.2019.7.issue-5 )
                : e625
                Affiliations
                [ 1 ] Department of Genetics Institute of Ophthalmology “Conde de Valenciana” Mexico City Mexico
                [ 2 ] “Dr. Ladislao de la Pascua” Dermatologic Center Mexico City Mexico
                [ 3 ] Department of Glaucoma Institute of Ophthalmology “Conde de Valenciana” Mexico City Mexico
                [ 4 ] Institute of Human Genetics, University Hospital Magdeburg Germany
                [ 5 ] Department of Genetics Hospital "Dr. Luis Sanchez Bulnes", Asociación para Evitar la Ceguera en México Mexico City Mexico
                [ 6 ] Department of Biochemistry, Faculty of Medicine UNAM Mexico City Mexico
                Author notes
                [*] [* ] Correspondence

                Juan Carlos Zenteno, Department of Genetics, Institute of Opthalmology “Conde de Valenciana”, Mexico City, Mexico.

                Email: jczenteno@ 123456institutodeoftalmologia.org

                Author information
                https://orcid.org/0000-0003-1618-9269
                https://orcid.org/0000-0002-9716-8146
                Article
                MGG3625
                10.1002/mgg3.625
                6503218
                30891959
                3f8d707d-3576-4ead-bb33-ce719104989c
                © 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 December 2018
                : 08 February 2019
                : 11 February 2019
                Page count
                Figures: 2, Tables: 2, Pages: 12, Words: 8612
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                mgg3625
                May 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.2.1 mode:remove_FC converted:07.05.2019

                encephalo‐cranio‐cutaneous lipomatosis,fgfr1,kras,mosaicism,mucocutaneous hyperpigmentation,oculoectodermal syndrome,rasopathies,schimmelpenning‐fuerstein‐mims syndrome

                Comments

                Comment on this article