35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Explicit Polarization: A Quantum Mechanical Framework for Developing Next Generation Force Fields

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Conspectus

          Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF).

          X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems (“fragments”) to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical force fields for biological macromolecules: overview and issues.

          Empirical force field-based studies of biological macromolecules are becoming a common tool for investigating their structure-activity relationships at an atomic level of detail. Such studies facilitate interpretation of experimental data and allow for information not readily accessible to experimental methods to be obtained. A large part of the success of empirical force field-based methods is the quality of the force fields combined with the algorithmic advances that allow for more accurate reproduction of experimental observables. Presented is an overview of the issues associated with the development and application of empirical force fields to biomolecular systems. This is followed by a summary of the force fields commonly applied to the different classes of biomolecules; proteins, nucleic acids, lipids, and carbohydrates. In addition, issues associated with computational studies on "heterogeneous" biomolecular systems and the transferability of force fields to a wide range of organic molecules of pharmacological interest are discussed. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fragmentation methods: a route to accurate calculations on large systems.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Design of a Next Generation Force Field: The X-POL Potential.

              An electronic structure-based polarization method, called the X-POL potential, has been described for the purpose of constructing an empirical force field for modeling polypeptides. In the X-POL potential, the internal, bonded interactions are fully represented by an electronic structure theory augmented with some empirical torsional terms. Non-bonded interactions are modeled by an iterative, combined quantum mechanical and molecular mechanical method, in which the molecular mechanical partial charges are derived from the molecular wave functions of the individual fragments. In this paper, the feasibility of such an electronic structure force field is illustrated by small model compounds. A method has been developed for separating a polypeptide chain into peptide units and its parameterization procedure in the X-POL potential is documented and tested on glycine dipeptide. We envision that the next generation of force fields for biomolecular polymer simulations will be developed based on electronic structure theory, which can adequately define and treat many-body polarization and charge delocalization effects.
                Bookmark

                Author and article information

                Journal
                Acc Chem Res
                Acc. Chem. Res
                ar
                achre4
                Accounts of Chemical Research
                American Chemical Society
                0001-4842
                1520-4898
                06 August 2015
                06 August 2014
                16 September 2014
                : 47
                : 9 , Beyond QM/MM: Fragment Quantum Mechanical Methods
                : 2837-2845
                Affiliations
                []Theoretical Chemistry Institute, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University , Changchun, Jilin Province 130028, People’s Republic of China
                []Department of Chemistry and Supercomputing Institute University of Minnesota , Minneapolis, Minnesota 55455, United States
                Author notes
                Article
                10.1021/ar5002186
                4165456
                25098651
                3f7652e3-b0ad-4218-9e78-0ef8119059fe
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 09 June 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ar5002186
                ar-2014-002186

                General chemistry
                General chemistry

                Comments

                Comment on this article