26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiology of respiratory disturbances in muscular dystrophies

      research-article
      ,
      Breathe
      European Respiratory Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively.

          The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement.

          Key points
          • A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination.

          • In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia.

          • Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness.

          • Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase.

          • The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing.

          Educational aims
          • To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy.

          • To understand the impact of respiratory disturbances in patients with muscular dystrophy.

          • To provide a brief description of the main forms of muscular dystrophy with their respiratory implications.

          Abstract

          Respiratory failure is a common feature of and the main cause of death in muscular dystrophy http://ow.ly/gyKm305KwZl

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Disorders of the respiratory muscles.

          The act of breathing depends on coordinated activity of the respiratory muscles to generate subatmospheric pressure. This action is compromised by disease states affecting anatomical sites ranging from the cerebral cortex to the alveolar sac. Weakness of the respiratory muscles can dominate the clinical manifestations in the later stages of several primary neurologic and neuromuscular disorders in a manner unique to each disease state. Structural abnormalities of the thoracic cage, such as scoliosis or flail chest, interfere with the action of the respiratory muscles-again in a manner unique to each disease state. The hyperinflation that accompanies diseases of the airways interferes with the ability of the respiratory muscles to generate subatmospheric pressure and it increases the load on the respiratory muscles. Impaired respiratory muscle function is the most severe consequence of several newly described syndromes affecting critically ill patients. Research on the respiratory muscles embraces techniques of molecular biology, integrative physiology, and controlled clinical trials. A detailed understanding of disease states affecting the respiratory muscles is necessary for every physician who practices pulmonary medicine or critical care medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human respiratory muscle actions and control during exercise.

            We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (Wmax) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of Wmax as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. DeltaVrc,a/DeltaVab was constant and independent of Wmax. Thus we used DeltaVab/time as an index of diaphragm velocity of shortening. From QB to 70% Wmax, diaphragmatic pressure (Pdi) increased approximately 2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was approximately 0 during QB but was equal to and 180 degrees out of phase with rib cage muscle pressure at all percent Wmax. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% Wmax there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180 degrees out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary complications of chronic neuromuscular diseases and their management.

              Chronic neuromuscular diseases may affect all major respiratory muscles groups including inspiratory, expiratory, and bulbar, and respiratory complications are the major cause of morbidity and mortality. Untreated, many of these diseases lead inexorably to hypercapnic respiratory failure, precipitated in some cases by chronic aspiration and secretion retention or pneumonia, related to impairment of cough and swallowing mechanisms. Many measures are helpful including inhibition of salivation, cough-assist techniques, devices to enhance communication, and physical therapy. In addition, ventilatory assistance is an important part of disease management for patients with advanced neuromuscular disease. Because of its comfort, convenience, and portability advantages, noninvasive positive pressure ventilation (NPPV) has become the modality of first choice for most patients. Patients to receive NPPV should be selected using consensus guidelines, and initiation should be gradual to maximize the chances for success. Attention should be paid to individual preferences for interfaces and early identification of cough impairment that necessitates the use of cough-assist devices. For patients considered unsuitable for noninvasive ventilation, invasive mechanical ventilation should be considered, but only after a frank but compassionate discussion between the patient, family, physician, and other caregivers.
                Bookmark

                Author and article information

                Journal
                Breathe (Sheff)
                Breathe (Sheff)
                BREATHE
                breathe
                Breathe
                European Respiratory Society
                1810-6838
                2073-4735
                December 2016
                : 12
                : 4
                : 318-327
                Affiliations
                Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
                Author notes
                Article
                EDU-0127-2016
                10.1183/20734735.012716
                5297947
                28210319
                3e09eee2-856b-4933-84b3-043ddc942289
                ©ERS 2016

                Breathe articles are open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.

                History
                Categories
                Reviews
                10

                Comments

                Comment on this article