16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental Intrastriatal Applications of Botulinum Neurotoxin-A: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is one of the most frequent neurodegenerative disorders. Its main pathophysiological characteristic is the loss of dopaminergic neurons in the substantia nigra pars compacta followed by a lack of striatal dopaminergic input and a consequent disinhibition of tonically active cholinergic interneurons. The resulting striatal hypercholinism causes major motor symptoms in PD. Anticholinergic pharmacotherapies have antiparkinsonian effects on motor symptoms, but, due to systemic actions, also numerous severe side effects occur on a regular basis. To circumvent these side effects, a local anticholinergic therapy acting exclusively in the striatum would be reasonable. Botulinum neurotoxin-A (BoNT-A) is synthesized by Clostridium botulinum and blocks the release of acetylcholine from the presynaptic bouton. For several decades, BoNT-A has been used successfully for medical and cosmetic purposes to induce controlled paralyses of single muscles. Our group and others investigated the experimental treatment of striatal hypercholinism by the direct injection of BoNT-A into the striatum of rats and mice as well as of hemiparkinsonian animal models. This review gives an overview of the most important results of the experimental intrastriatal BoNT-A application, with a focus on hemiparkinsonian rats.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SV2 is the protein receptor for botulinum neurotoxin A.

            How the widely used botulinum neurotoxin A (BoNT/A) recognizes and enters neurons is poorly understood. We found that BoNT/A enters neurons by binding to the synaptic vesicle protein SV2 (isoforms A, B, and C). Fragments of SV2 that harbor the toxin interaction domain inhibited BoNT/A from binding to neurons. BoNT/A binding to SV2A and SV2B knockout hippocampal neurons was abolished and was restored by expressing SV2A, SV2B, or SV2C. Reduction of SV2 expression in PC12 and Neuro-2a cells also inhibited entry of BoNT/A, which could be restored by expressing SV2 isoforms. Finally, mice that lacked an SV2 isoform (SV2B) displayed reduced sensitivity to BoNT/A. Thus, SV2 acts as the protein receptor for BoNT/A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cholinergic system and Parkinson disease.

              Although Parkinson disease (PD) is viewed traditionally as a motor syndrome secondary to nigrostriatal dopaminergic denervation, recent studies emphasize non-motor features. Non-motor comorbidities, such as cognitive impairment, are likely the result of an intricate interplay of multi-system degenerations and neurotransmitter deficiencies extending beyond the loss of dopaminergic nigral neurons. The pathological hallmark of parkinsonian dementia is the presence of extra-nigral Lewy bodies that can be accompanied by other pathologies, such as senile plaques. Lewy first identified the eponymous Lewy body in neurons of the nucleus basalis of Meynert (nbM), the source of cholinergic innervation of the cerebral cortex. Although cholinergic denervation is recognized as a pathological hallmark of Alzheimer disease (AD), in vivo neuroimaging studies reveal loss of cerebral cholinergic markers in parkinsonian dementia similar to or more severe than in prototypical AD. Imaging studies agree with post-mortem evidence suggesting that basal forebrain cholinergic system degeneration appears early in PD and worsens coincident with the appearance of dementia. Early cholinergic denervation in PD without dementia appears to be heterogeneous and may make specific contributions to the PD clinical phenotype. Apart from well-known cognitive and behavioral deficits, central, in particular limbic, cholinergic denervation may be associated with progressive deficits of odor identification in PD. Recent evidence indicates also that subcortical cholinergic denervation, probably due to degeneration of brainstem pedunculopontine nucleus neurons, may relate to the presence of dopamine non-responsive gait and balance impairments, including falls, in PD. Published by Elsevier B.V.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 May 2018
                May 2018
                : 19
                : 5
                : 1392
                Affiliations
                Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany; andreas.wree@ 123456med.uni-rostock.de
                Author notes
                Article
                ijms-19-01392
                10.3390/ijms19051392
                5983629
                29735936
                395c0919-b1b9-44c7-9365-fcb7aa366a18
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 March 2018
                : 02 May 2018
                Categories
                Review

                Molecular biology
                botulinum toxin,6-ohda,basal ganglia,striatum,parkinson’s disease,brain,acetylcholine
                Molecular biology
                botulinum toxin, 6-ohda, basal ganglia, striatum, parkinson’s disease, brain, acetylcholine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,040

                Cited by3

                Most referenced authors798