10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exercising Caution Upon Waking–Can Exercise Reduce Sleep Inertia?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep inertia, the transitional state of reduced alertness and impaired cognitive performance upon waking, is a safety risk for on-call personnel who can be required to perform critical tasks soon after waking. Sleep inertia countermeasures have previously been investigated; however, none have successfully dissipated sleep inertia within the first 15 min following waking. During this time, on-call personnel could already be driving, providing advice, or performing other safety-critical tasks. Exercise has not yet been investigated as a sleep inertia countermeasure but has the potential to stimulate the key physiological mechanisms that occur upon waking, including changes in cerebral blood flow, the cortisol awakening response, and increases in core body temperature. Here, we examine these physiological processes and hypothesize how exercise can stimulate them, positioning exercise as an effective sleep inertia countermeasure. We then propose key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary. Finally, practical considerations are identified, including the recommendation that qualitative field-based research be conducted with on-call personnel to determine the potential constraints in utilizing exercise as a sleep inertia countermeasure in real-world scenarios.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of acute exercise on cognitive performance: a meta-analysis.

          There is a substantial body of literature related to the effects of a single session of exercise on cognitive performance. The premise underlying this research is that physiological changes in response to exercise have implications for cognitive function. This literature has been reviewed both narratively and meta-analytically and, although the research findings are mixed, researchers have generally concluded that there is a small positive effect. The purpose of this meta-analysis was to provide an updated comprehensive analysis of the extant literature on acute exercise and cognitive performance and to explore the effects of moderators that have implications for mechanisms of the effects. Searches of electronic databases and examinations of reference lists from relevant studies resulted in 79 studies meeting inclusion criteria. Consistent with past findings, analyses indicated that the overall effect was positive and small (g=0.097 n=1034). Positive and small effects were also found in all three acute exercise paradigms: during exercise (g=0.101; 95% confidence interval [CI]; 0.041-0.160), immediately following exercise (g=0.108; 95% CI; 0.069-0.147), and after a delay (g=0.103; 95% CI; 0.035-0.170). Examination of potential moderators indicated that exercise duration, exercise intensity, type of cognitive performance assessed, and participant fitness were significant moderators. In conclusion, the effects of acute exercise on cognitive performance are generally small; however, larger effects are possible for particular cognitive outcomes and when specific exercise parameters are used. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis.

            The effects of acute exercise on cognitive performance were examined using meta-analytic techniques. The overall mean effect size was dependent on the timing of cognitive assessment. During exercise, cognitive task performance was impaired by a mean effect of -0.14. However, impairments were only observed during the first 20min of exercise. Otherwise, exercise-induced arousal enhanced performance on tasks that involved rapid decisions and automatized behaviors. Following exercise, cognitive task performance improved by a mean effect of 0.20. Arousal continued to facilitate speeded mental processes and also enhanced memory storage and retrieval. Positive effects were observed following exercise regardless of whether the study protocol was designed to measure the effects of steady-state exercise, fatiguing exercise, or the inverted-U hypothesis. Finally, cognitive performance was affected differentially by exercise mode. Cycling was associated with enhanced performance during and after exercise, whereas treadmill running led to impaired performance during exercise and a small improvement in performance following exercise. These results are indicative of the complex relation between exercise and cognition. Cognitive performance may be enhanced or impaired depending on when it is measured, the type of cognitive task selected, and the type of exercise performed. Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of acute bouts of exercise on cognition.

              A review was conducted of studies that assessed the effects of acute bouts of physical activity on adults' cognitive performance. Three groups of studies were constituted on the basis of the type of exercise protocol employed. Each group was then evaluated in terms of information-processing theory. It was concluded that submaximal aerobic exercise performed for periods up to 60 min facilitate specific aspects of information processing; however, extended exercise that leads to dehydration compromises both information processing and memory functions. The selective effects of exercise on cognitive performance are explained in terms of Sanders' [Acta Psychol. 53 (1983) 61] cognitive-energetic model.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                07 April 2020
                2020
                : 11
                : 254
                Affiliations
                [1] 1Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University , Adelaide, SA, Australia
                [2] 2Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University , Geelong, VIC, Australia
                [3] 3Fatigue Countermeasures Laboratory, San José State University Research Foundation , Moffett Field, CA, United States
                Author notes

                Edited by: Till Roenneberg, Ludwig Maximilian University of Munich, Germany

                Reviewed by: Christina Schmidt, Cyclotron Research Center, Belgium; Carla V. Finkielstein, Virginia Tech, United States

                *Correspondence: Katya Kovac, katya.kovac@ 123456cqumail.com

                This article was submitted to Chronobiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.00254
                7155753
                32317980
                39358646-5e82-4588-bb05-9c24c1c7568f
                Copyright © 2020 Kovac, Ferguson, Paterson, Aisbett, Hilditch, Reynolds and Vincent.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 December 2019
                : 05 March 2020
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 95, Pages: 10, Words: 0
                Funding
                Funded by: Central Queensland University 10.13039/501100001790
                Categories
                Physiology
                Hypothesis and Theory

                Anatomy & Physiology
                exercise,sleep inertia,waking,cortisol awakening response,thermoregulation,cerebral blood flow,functional connectivity

                Comments

                Comment on this article