19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenolic Profile, Inhibition of α-Amylase and α-Glucosidase Enzymes, and Antioxidant Properties of Solanum elaeagnifolium Cav. (Solanaceae): In Vitro and In Silico Investigations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the chemical composition and the antioxidant and antidiabetic properties of S. elaeagnifolium flower (SEFl), fruit (SEFr), and leaf (SEFe) extracts were investigated in vitro and in silico. HPLC-DAD analysis was used to determine the chemical components. Colorimetric techniques were used to identify polyphenols and flavonoids. The antioxidant capacity was determined using DPPH and TAC assays. The antidiabetic activity was examined using the enzymes α-amylase and α-glucosidase. Molecular docking methods were used to assess the anti-dipeptidyl peptidase IV (DPP-IV) activity. According to HPLC findings, extracts of S. elaeagnifolium flowers, leaves, and fruits are rich in salicylic acid, sinapic acid, chlorogenic acid, naringin, quercetin, quercetin-3-O-beta-glucoside, kaempferol, and chalcone. The IC50 for flower, leaf, and fruit extracts were 132 ± 5.59 μg/mL, 43.19 ± 1.46 μg/mL, and 132 ± 5.59 μg/mL, respectively. The total antioxidant capacity of SEFr, SEFe, and SEFl were determined to be 900.06 ± 4.01 μg AAE/mg, 792.10 ± 6.72 μg AAE/mg, and 681.10 ± 3.02 μg AAE/mg, respectively. Importantly, SEFe, SEFl, and SEFr displayed significant anti-α-amylase activity, with IC50 values of 79.16 ± 2.35 µg/mL, 99.16 ± 1.17 µg/mL, and 40.31 ± 2.04 µg/mL, respectively. The results also showed that SEFr, SEFe, and SEFl all exhibited potent anti-α-glucosidase activity, whose IC50 values were determined to be 20.53 ± 0.37 µg/mL (SEFr), 20.05 ± 0.12 µg/mL (SEFe), and 41.1 ± 1.55 µg/mL (SEFl). Molecular docking of S. elaeagnifolium phenolic compounds in the active site of DPP-IV revealed a strong inhibitory effect, with a glide score ranging from −2.63 to −8.10 Kcal/mol. Notably—with glide scores of −8.10, −6.23, −5.73, and −5.37 Kcal/mol—rutin, quercetin-3-O-beta-glucoside, chalcone, and naringin were the most active molecules against DPP-IV.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

          Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Diabetes mellitus and oxidative stress—A concise review

              Human body is continuously exposed to different types of agents that results in the production of reactive species called as free radicals (ROS/RNS) which by the transfer of their free unpaired electron causes the oxidation of cellular machinery. In order to encounter the deleterious effects of such species, body has got endogenous antioxidant systems or it obtains exogenous antioxidants from diet that neutralizes such species and keeps the homeostasis of body. Any imbalance between the RS and antioxidants leads to produce a condition known as “oxidative stress” that results in the development of pathological condition among which one is diabetes. Most of the studies reveal the inference of oxidative stress in diabetes pathogenesis by the alteration in enzymatic systems, lipid peroxidation, impaired Glutathione metabolism and decreased Vitamin C levels. Lipids, proteins, DNA damage, Glutathione, catalane and superoxide dismutase are various biomarkers of oxidative stress in diabetes mellitus. Oxidative stress induced complications of diabetes may include stroke, neuropathy, retinopathy and nephropathy. The basic aim of this review was to summarize the basics of oxidative stress in diabetes mellitus.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PROCCO
                Processes
                Processes
                MDPI AG
                2227-9717
                May 2023
                May 04 2023
                : 11
                : 5
                : 1384
                Article
                10.3390/pr11051384
                38792726-7795-4166-9e15-fd864ed15957
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article