2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition.

          Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death

            Summary During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term “minority MOMP.” Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model.

              Small cell lung cancer (SCLC) is a highly aggressive human tumor with a more than 95% mortality rate. Its ontogeny and molecular pathogenesis remains poorly understood. We established a mouse model for neuroendocrine (NE) lung tumors by conditional inactivation of Rb1 and Trp53 in mouse lung epithelial cells. Mice carrying conditional alleles for both Rb1 and Trp53 developed with high incidence aggressive lung tumors with striking morphologic and immunophenotypic similarities to SCLC. Most of these tumors, which we designate MSCLC (murine small cell lung carcinoma), diffusely spread through the lung and gave rise to extrapulmonary metastases. In our model, inactivation of both Rb1 and p53 was a prerequisite for the pathogenesis of SCLC.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2019
                August 2 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-11371-x
                31375684
                3717ddf1-a5f9-4750-af9c-b9853be8a1f6
                © 2019

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article