2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pt Nanoparticles Confined by Zirconium Metal–Organic Frameworks with Enhanced Enzyme-like Activity for Glucose Detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal nanozymes hold promise for chemical and biological applications, and their implementation relies on high catalytic efficiency and stability. Using the metal–organic framework as an ideal carrier for well-dispersed ultra-small metal nanoparticles (NPs) is beneficial for improving the catalytic efficiency of nanozymes. In this study, a zirconium-based metal organic framework (UiO-66) with good chemical stability and high porosity was synthesized and used to construct Pt/UiO-66 nanocomposites. The percentage of Pt in UiO-66 can be tuned easily by adjusting the feeding amount of PtCl 4 2–. Because of the confinement effect of mesopores, the Pt particles with an average diameter of 3.8 nm are formed and dispersed throughout the pores of the UiO-66 particle. The Pt/UiO-66 composites show efficient oxidase- and peroxidase-like activity. Both the oxidase- and peroxidase-like activities are dependent on the Pt percentage. Pt/UiO-66-6% exhibits enhanced peroxidase-like activity, ∼3.9 times higher than that of commercial Pt/C with 10 wt % Pt. We propose that the construction of Pt/UiO-66 increased the utilization efficiency and stability of Pt NPs and provided more active sites for catalytic reactions. Using the peroxidase-like activity of Pt/UiO-66, a colorimetric method that can be used for actual blood glucose detection was developed for the specific detection of glucose with a limit of detection of 0.033 mM.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)

          An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field. Nanozymes are nanomaterials with enzyme-like characteristics ( Chem. Soc. Rev. , 2013, 42 , 6060–6093). They have been developed to address the limitations of natural enzymes and conventional artificial enzymes. Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational design, great progress has been achieved in the field of nanozymes since the publication of the above-mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the types of nanozymes and their representative nanomaterials, together with the corresponding catalytic mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are suggested. The current review can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanozyme: new horizons for responsive biomedical applications.

              Nanozymes are nanomaterial-based artificial enzymes. By effectively mimicking catalytic sites of natural enzymes or harboring multivalent elements for reactions, nanozyme systems have successfully served as direct surrogates of traditional enzymes for catalysis. With the rapid development and ever-deepening understanding of nanotechnology, nanozymes offer higher catalytic stability, ease of modification and lower manufacturing cost than protein enzymes. Additionally, nanozymes possess inherent nanomaterial properties, providing not only a simple substitute of enzymes but also a multimodal platform interfacing complex biologic environments. Recent extensive research has focused on designing various nanozyme systems that are responsive to one or multiple substrates by tailored means. Catalytic activities of nanozymes can be regulated by pH, H2O2 and glutathione concentrations and levels of oxygenation in different microenvironments. Moreover, nanozymes can be remotely-controlled via different stimuli, including a magnetic field, light, ultrasound, and heat. Collectively, these factors can be adjusted to maximize the diagnostic and therapeutic efficacies of different diseases in biomedical settings. Therefore, by integrating the catalytic property and inherent nanomaterial nature of nanozyme systems, we anticipate that stimuli-responsive nanozymes will open up new horizons for diagnosis, treatment, and theranostics.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                11 February 2021
                23 February 2021
                : 6
                : 7
                : 4807-4815
                Affiliations
                []Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University , 88 Bayi Road, Xuchang, Henan 461000, P. R. China
                []School of Civil Engineering and Communication, North China University of Water Resources and Electric Power , 36 Beihuan Road, Zhengzhou, Henan 450045, China
                [§ ]Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University , 88 Bayi Road, Xuchang, Henan 461000, China
                Author notes
                Article
                10.1021/acsomega.0c05747
                7905824
                33644589
                3626bb0f-d827-439b-8e86-c96ad6dc754c
                © 2021 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 25 November 2020
                : 01 February 2021
                Categories
                Article
                Custom metadata
                ao0c05747
                ao0c05747

                Comments

                Comment on this article