44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Pan- Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high throughput capability and its simplicity of use, which can be quickly adapted in a laboratory to enhance the capacity of rabies molecular diagnostics. The LN34 assay provides an alternative approach for rabies diagnostics, especially in rural areas and rabies endemic regions that lack the conditions and broad experience required to run the standard DFA assay.

          Author Summary

          Rabies is a preventable disease–but is still responsible for approximately 70,000 human deaths worldwide each year. The majority of human deaths occur in Asia and Africa where there is a lack of diagnostic resources and expertise, making it difficult to develop effective prevention and control strategies. In recent years, several real-time RT-PCR based diagnostic assays have been introduced to many developing countries in an effort to control the H1N1 pandemic flu, Ebola outbreak, and other tropical viral infections. In an effort to further improve rabies diagnostics, we developed a pan-lyssavirus Taqman real-time RT-PCR assay called LN34 for the detection of all known RABV variants and other lyssavirus species. The LN34 assay uses a combination of degenerate nucleotides, multiplex primers and probes, and unique probe modifications to achieve superior sensitivity and specificity compared to previously published RT-PCR based rabies diagnostics. Equally important, the LN34 assay is simple to set up, high throughput, combines multiple standard controls and can be used directly in widely available real-time RT-PCR systems. The LN34 assay was validated using a broad and comprehensive panel of highly diverse RABV variants and other lyssaviruses. A validated universal rabies diagnostic assay will be important in regions where RABV and other lyssaviruses co-circulate and for establishing a widely accepted diagnostic protocol. Over 200 clinical samples (including ante-mortem, post-mortem, and field derived samples) were tested with the LN34 assay, and the assay achieved 100% diagnostic sensitivity and specificity in our laboratory. Over 300 published genome sequences from representatives of RABV and other lyssaviruses were found to contain the conserved LN34 primer and probe targeting sites in an in silico analysis. We are expanding the validation of the LN34 assay to multiple domestic and international laboratories and expect the LN34 assay will drastically improve rabies diagnostic capacities globally.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA2: molecular evolutionary genetics analysis software.

          We have developed a new software package, Molecular Evolutionary Genetics Analysis version 2 (MEGA2), for exploring and analyzing aligned DNA or protein sequences from an evolutionary perspective. MEGA2 vastly extends the capabilities of MEGA version 1 by: (1) facilitating analyses of large datasets; (2) enabling creation and analyses of groups of sequences; (3) enabling specification of domains and genes; (4) expanding the repertoire of statistical methods for molecular evolutionary studies; and (5) adding new modules for visual representation of input data and output results on the Microsoft Windows platform. http://www.megasoftware.net. s.kumar@asu.edu
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heminested PCR assay for detection of six genotypes of rabies and rabies-related viruses.

            A heminested reverse transcriptase PCR (hnRT-PCR) protocol which is rapid and sensitive for the detection of rabies virus and rabies-related viruses is described. Sixty isolates from six of the seven genotypes of rabies and rabies-related viruses were screened successfully by hnRT-PCR and Southern blot hybridization. Of the 60 isolates, 93% (56 of 60) were positive by external PCR, while all isolates were detected by heminested PCR and Southern blot hybridization. We also report on a comparison of the sensitivity of the standard fluorescent-antibody test (FAT) for rabies antigen and that of hnRT-PCR for rabies viral RNA with degraded tissue infected with a genotype 1 virus. Results indicated that FAT failed to detect viral antigen in brain tissue that was incubated at 37 degrees C for greater than 72 h, while hnRT-PCR detected viral RNA in brain tissue that was incubated at 37 degrees C for 360 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel Lyssavirus in Bat, Spain

              A new tentative lyssavirus, Lleida bat lyssavirus, was found in a bent-winged bat (Miniopterus schreibersii) in Spain. It does not belong to phylogroups I or II, and it seems to be more closely related to the West Causasian bat virus, and especially to the Ikoma lyssavirus.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                12 January 2017
                January 2017
                : 11
                : 1
                : e0005258
                Affiliations
                [001]Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
                Colorado State University, UNITED STATES
                Author notes

                I have read the journal's policy and the authors of this manuscript have the following competing interests: Patents has been filed for assays described in this manuscript through CDC Technology Transfer Office/NIH Office.

                • Conceived and designed the experiments: YL.

                • Performed the experiments: AW KW JG RECC HZ XM LO CMG YL.

                • Analyzed the data: YL AW KW.

                • Contributed reagents/materials/analysis tools: AVV JAE LG LO.

                • Wrote the paper: AW CMG YL.

                Author information
                http://orcid.org/0000-0001-8815-6816
                Article
                PNTD-D-16-00838
                10.1371/journal.pntd.0005258
                5230753
                28081126
                3479c399-d710-4728-b642-80c42d055441

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 6 May 2016
                : 14 December 2016
                Page count
                Figures: 1, Tables: 4, Pages: 17
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Lyssavirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Lyssavirus
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Rabies
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Rabies
                Medicine and Health Sciences
                Infectious Diseases
                Zoonoses
                Rabies
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Nucleotide Sequencing
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Nucleotide Sequencing
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Dogs
                Research and Analysis Methods
                Computational Techniques
                Split-Decomposition Method
                Multiple Alignment Calculation
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article