Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Airway smooth muscle function in asthma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found

          Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase.

          Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial.

            Dupilumab, a fully human anti-interleukin-4 receptor α monoclonal antibody, inhibits interleukin-4 and interleukin-13 signalling, key drivers of type-2-mediated inflammation. Adults with uncontrolled persistent asthma who are receiving medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist require additional treatment options as add-on therapy. We aimed to assess the efficacy and safety of dupilumab as add-on therapy in patients with uncontrolled persistent asthma on medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist, irrespective of baseline eosinophil count.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scaling the microrheology of living cells.

              We report a scaling law that governs both the elastic and frictional properties of a wide variety of living cell types, over a wide range of time scales and under a variety of biological interventions. This scaling identifies these cells as soft glassy materials existing close to a glass transition, and implies that cytoskeletal proteins may regulate cell mechanical properties mainly by modulating the effective noise temperature of the matrix. The practical implications are that the effective noise temperature is an easily quantified measure of the ability of the cytoskeleton to deform, flow, and reorganize.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 October 2022
                2022
                : 13
                : 993406
                Affiliations
                [1] 1 Meakins-Christie Laboratories , Research Institute of the McGill University Health Centre , Montreal, QC, Canada
                [2] 2 Department of Medicine , McGill University , Montreal, QC, Canada
                Author notes

                Edited by: M. Teresa Perez-Garcia, University of Valladolid, Spain

                Reviewed by: Mai ElMallah, Duke University, United States

                Susan Gunst, Indiana University Bloomington, United States

                *Correspondence: Anne-Marie Lauzon, anne-marie.lauzon@ 123456mcgill.ca

                This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology

                Article
                993406
                10.3389/fphys.2022.993406
                9581182
                36277199
                34267833-c981-486d-94ad-93c77156d18b
                Copyright © 2022 Xiong, Martin and Lauzon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 July 2022
                : 14 September 2022
                Categories
                Physiology
                Review

                Anatomy & Physiology
                airway smooth muscle,airway hyperresponsiveness,asthma,airway smooth muscle contraction,airway remodeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content685

                Cited by9

                Most referenced authors2,221