37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The extracellular matrix of green algae

      review-article
      ,
      Plant Physiology
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          Hemicelluloses.

          Hemicelluloses are polysaccharides in plant cell walls that have beta-(1-->4)-linked backbones with an equatorial configuration. Hemicelluloses include xyloglucans, xylans, mannans and glucomannans, and beta-(1-->3,1-->4)-glucans. These types of hemicelluloses are present in the cell walls of all terrestrial plants, except for beta-(1-->3,1-->4)-glucans, which are restricted to Poales and a few other groups. The detailed structure of the hemicelluloses and their abundance vary widely between different species and cell types. The most important biological role of hemicelluloses is their contribution to strengthening the cell wall by interaction with cellulose and, in some walls, with lignin. These features are discussed in relation to widely accepted models of the primary wall. Hemicelluloses are synthesized by glycosyltransferases located in the Golgi membranes. Many glycosyltransferases needed for biosynthesis of xyloglucans and mannans are known. In contrast, the biosynthesis of xylans and beta-(1-->3,1-->4)-glucans remains very elusive, and recent studies have led to more questions than answers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            One thousand plant transcriptomes and the phylogenomics of green plants

            Green plants (Viridiplantae) include around 450,000–500,000 species 1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes

              Abstract This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Physiol
                Plant Physiol
                plphys
                Plant Physiology
                Oxford University Press (US )
                0032-0889
                1532-2548
                January 2024
                03 July 2023
                03 July 2023
                : 194
                : 1
                : 15-32
                Affiliations
                Department of Biology, Skidmore College , Saratoga Springs, NY 12866, USA
                Department of Biology, Skidmore College , Saratoga Springs, NY 12866, USA
                Author notes
                Author for correspondence: ddomoz@ 123456skidmore.edu

                D.S.D. and J.G.L. contributed to the literature search, draft composition, and subsequent editorial changes.

                The author responsible for distribution of materials integral to the findings presented in the article in accordance with the policy described in the Instructions for Authors ( https://academic.oup.com/plphys/pages/general-instructions) is: David S. Domozych ( ddomoz@ 123456skidmore.edu ).

                Conflict of interest statement. The authors declare that they have no conflict of interests.

                Author information
                https://orcid.org/0000-0001-8800-0061
                https://orcid.org/0000-0002-1550-2463
                Article
                kiad384
                10.1093/plphys/kiad384
                10762512
                37399237
                33c8be61-8d10-4124-8bcd-4b4ec006c220
                © The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2023
                : 30 May 2023
                : 02 August 2023
                Page count
                Pages: 18
                Funding
                Funded by: National Science Foundation, DOI 10.13039/100000001;
                Award ID: 2129443
                Categories
                Update
                AcademicSubjects/SCI01270
                AcademicSubjects/SCI01280
                AcademicSubjects/SCI02286
                AcademicSubjects/SCI02287
                AcademicSubjects/SCI02288
                Plphys/52

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article