23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors—in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins—not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.

          Related collections

          Most cited references401

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities.

          The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multilineage potential of adult human mesenchymal stem cells.

            Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The canonical Notch signaling pathway: unfolding the activation mechanism.

              Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 October 2020
                October 2020
                : 21
                : 20
                : 7597
                Affiliations
                [1 ]Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Jessica.Jann@ 123456usherbrooke.ca (J.J.); Suzanne.Gascon@ 123456USherbrooke.ca (S.G.)
                [2 ]Department of Rhumatology, CHUS, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada; Sophie.Roux@ 123456USherbrooke.ca
                [3 ]Centre de Recherche du CHUS, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
                Author notes
                [* ]Correspondence: Nathalie.Faucheux@ 123456USherbrooke.ca ; Tel.: +1-819-821-8000 (ext. 61343)
                Author information
                https://orcid.org/0000-0002-7427-9361
                https://orcid.org/0000-0003-0855-9186
                Article
                ijms-21-07597
                10.3390/ijms21207597
                7589189
                33066607
                3313da8d-6382-4f86-9242-a726fa8c0c26
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 September 2020
                : 10 October 2020
                Categories
                Review

                Molecular biology
                bone morphogenetic proteins,osteoclastogenesis,osteogenic differentiation,smad signaling pathway,rankl

                Comments

                Comment on this article