21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients’ quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: found
          • Article: not found

          EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update

          To provide an update of the European League Against Rheumatism (EULAR) rheumatoid arthritis (RA) management recommendations to account for the most recent developments in the field. An international task force considered new evidence supporting or contradicting previous recommendations and novel therapies and strategic insights based on two systematic literature searches on efficacy and safety of disease-modifying antirheumatic drugs (DMARDs) since the last update (2016) until 2019. A predefined voting process was applied, current levels of evidence and strengths of recommendation were assigned and participants ultimately voted independently on their level of agreement with each of the items. The task force agreed on 5 overarching principles and 12 recommendations concerning use of conventional synthetic (cs) DMARDs (methotrexate (MTX), leflunomide, sulfasalazine); glucocorticoids (GCs); biological (b) DMARDs (tumour necrosis factor inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, infliximab), abatacept, rituximab, tocilizumab, sarilumab and biosimilar (bs) DMARDs) and targeted synthetic (ts) DMARDs (the Janus kinase (JAK) inhibitors tofacitinib, baricitinib, filgotinib, upadacitinib). Guidance on monotherapy, combination therapy, treatment strategies (treat-to-target) and tapering on sustained clinical remission is provided. Cost and sequencing of b/tsDMARDs are addressed. Initially, MTX plus GCs and upon insufficient response to this therapy within 3 to 6 months, stratification according to risk factors is recommended. With poor prognostic factors (presence of autoantibodies, high disease activity, early erosions or failure of two csDMARDs), any bDMARD or JAK inhibitor should be added to the csDMARD. If this fails, any other bDMARD (from another or the same class) or tsDMARD is recommended. On sustained remission, DMARDs may be tapered, but not be stopped. Levels of evidence and levels of agreement were mostly high. These updated EULAR recommendations provide consensus on the management of RA with respect to benefit, safety, preferences and cost.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WNT signaling in bone homeostasis and disease: from human mutations to treatments.

            Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rheumatoid arthritis

              Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints and is associated with autoantibodies that target various molecules including modified self-epitopes. The identification of novel autoantibodies has improved diagnostic accuracy, and newly developed classification criteria facilitate the recognition and study of the disease early in its course. New clinical assessment tools are able to better characterize disease activity states, which are correlated with progression of damage and disability, and permit improved follow-up. In addition, better understanding of the pathogenesis of RA through recognition of key cells and cytokines has led to the development of targeted disease-modifying antirheumatic drugs. Altogether, the improved understanding of the pathogenetic processes involved, rational use of established drugs and development of new drugs and reliable assessment tools have drastically altered the lives of individuals with RA over the past 2 decades. Current strategies strive for early referral, early diagnosis and early start of effective therapy aimed at remission or, at the least, low disease activity, with rapid adaptation of treatment if this target is not reached. This treat-to-target approach prevents progression of joint damage and optimizes physical functioning, work and social participation. In this Primer, we discuss the epidemiology, pathophysiology, diagnosis and management of RA.
                Bookmark

                Author and article information

                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                March 2022
                March 06 2022
                : 23
                : 5
                : 2871
                Article
                10.3390/ijms23052871
                35270012
                e88894a3-dc9e-4a45-9a6c-a6cbb755ea1b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article