82
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Toxoplasma gondii Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite Persistence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toxoplasma gondii infects up to one third of the world's population. A key to the success of T. gondii as a parasite is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. Because most of the antibodies and reagents that recognize the cyst wall recognize carbohydrates, identification of the components of the cyst wall has been technically challenging. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in reduced cyst number and a fragile brain cyst phenotype characterized by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress, and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that confers essential sturdiness to the T. gondii tissue cyst critical for persistence of bradyzoite forms.

          Author Summary

          Toxoplasma gondii causes severe encephalitis in immune compromised hosts after reactivation of brain cysts that persist for the life span of the host. The biological mechanisms of bradyzoite persistence within cysts are not fully understood. The glycosylated cyst wall is thought to play a crucial role in survival of bradyzoites during chronic infection as well as successful oral transmission of infection. Here we have identified the gene encoding cyst wall glycoprotein CST1. When we delete the CST1 gene, parasites form dramatically fragile brain cysts. Parasites lacking CST1 develop fewer brain cysts, show dysregulation of bradyzoite-specific gene expression and are less able to grow under stressed conditions. The rescue of these phenotypes requires the heavily glycosylated mucin domain of CST1. These studies demonstrate that the glycosylation of CST1 plays a significant role in the structural integrity and persistence of brain cysts. Agents that perturb CST1 glycosylation have the potential to disrupt formation of latent brain cysts, preventing chronic Toxoplasma infection.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis.

          Toxoplasma gondii's importance for humans refers mainly to primary infection during pregnancy, resulting in abortion/stillbirth or congenital toxoplasmosis. The authors sought to evaluate the current global status of T. gondii seroprevalence and its correlations with risk factors, environmental and socioeconomic parameters. Literature published during the last decade on toxoplasmosis seroprevalence, in women who were pregnant or of childbearing age, was retrieved. A total of 99 studies were eligible; a further 36 studies offered seroprevalence data from regions/countries for which no data on pregnancy/childbearing age were available. Foci of high prevalence exist in Latin America, parts of Eastern/Central Europe, the Middle East, parts of south-east Asia and Africa. Regional seroprevalence variations relate to individual subpopulations' religious and socioeconomic practices. A trend towards lower seroprevalence is observed in many European countries and the United States of America (USA). There is no obvious climate-related gradient, excluding North and Latin America. Immigration has affected local prevalence in certain countries. We further sought to recognise specific risk factors related to seropositivity; however, such risk factors are not reported systematically. Population awareness may affect recognition of said risks. Global toxoplasmosis seroprevalence is continuingly evolving, subject to regional socioeconomic parameters and population habits. Awareness of these seroprevalence trends, particularly in the case of women of childbearing age, may allow proper public health policies to be enforced, targeting in particular seronegative women of childbearing age in high seroprevalence areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites.

            O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection.

              Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To assess the potential of the type II Δku80 Δhxgprt strain to examine gene function affecting cyst biology and latent stages of infection, we targeted the deletion of four parasite antigen genes (GRA4, GRA6, ROP7, and tgd057) that encode characterized CD8(+) T cell epitopes that elicit corresponding antigen-specific CD8(+) T cell populations associated with control of infection. Cyst development in these type II mutant strains was not found to be strictly dependent on antigen-specific CD8(+) T cell host responses. In contrast, a significant biological role was revealed for the dense granule proteins GRA4 and GRA6 in cyst development since brain tissue cyst burdens were drastically reduced specifically in mutant strains with GRA4 and/or GRA6 deleted. Complementation of the Δgra4 and Δgra6 mutant strains using a functional allele of the deleted GRA coding region placed under the control of the endogenous UPRT locus was found to significantly restore brain cyst burdens. These results reveal that GRA proteins play a functional role in establishing cyst burdens and latent infection. Collectively, our results suggest that a type II Δku80 Δhxgprt genetic background enables a higher-throughput functional analysis of the parasite genome to reveal fundamental aspects of parasite biology controlling virulence, pathogenesis, and transmission.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2013
                December 2013
                26 December 2013
                : 9
                : 12
                : e1003823
                Affiliations
                [1 ]Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
                [2 ]Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
                [3 ]Fundamental and Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
                [4 ]Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
                [5 ]Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
                University of Geneva, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TT LMW. Performed the experiments: TT YFM LMM RCT LMW. Analyzed the data: TT DJB BAF KK LMW. Contributed reagents/materials/analysis tools: TT DJB BAF RCT LMW. Wrote the paper: TT DJB KK LMW.

                Article
                PPATHOGENS-D-13-01336
                10.1371/journal.ppat.1003823
                3873430
                24385904
                330b2991-0e2d-472f-9013-bb031cecba2f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 May 2013
                : 25 October 2013
                Page count
                Pages: 15
                Funding
                Research was supported by NIH grants AI39454 (LMW), AI095094 (LMW), AI087625 (KK), 5T32AI070117 (TT), NCI P30CA01333 and by grant 40070 (LMW) from Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Lab. This work was also supported in part by the Center for AIDS Research at the Albert Einstein College of Medicine and Montefiore Medical Center funded by the National Institutes of Health (NIH AI-051519). The funders had no role in study design, data collection and ‘nalysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article