127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative “occupancy” was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage.

          IMPORTANCE

          The protozoan Toxoplasma gondii establishes a lifelong chronic infection mediated by the bradyzoite form of the parasite within tissue cysts. Technical challenges have limited even the most basic studies on bradyzoites and the tissue cysts in vivo. Bradyzoites, which are viewed as dormant, poorly replicating or nonreplicating entities, were found to be surprisingly active, exhibiting not only the capacity for growth but also previously unrecognized patterns of replication that point to their being considerably more dynamic than previously imagined. These newly revealed properties force us to reexamine the most basic questions regarding bradyzoite biology and the progression of the chronic phase of toxoplasmosis. By developing new tools and approaches to study the chronic phase at the level of bradyzoites, we expose new avenues to tackle both drug development and a better understanding of events that may lead to reactivated symptomatic disease.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts.

          Infections by the protozoan parasite Toxoplasma gondii are widely prevalent world-wide in animals and humans. This paper reviews the life cycle; the structure of tachyzoites, bradyzoites, oocysts, sporocysts, sporozoites and enteroepithelial stages of T. gondii; and the mode of penetration of T. gondii. The review provides a detailed account of the biology of tissue cysts and bradyzoites including in vivo and in vitro development, methods of separation from host tissue, tissue cyst rupture, and relapse. The mechanism of in vivo and in vitro stage conversion from sporozoites to tachyzoites to bradyzoites and from bradyzoites to tachyzoites to bradyzoites is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis.

            To perform a meta-analysis on studies reporting prevalence of Toxoplasma gondii (T. gondii) infection in any psychiatric disorder compared with healthy controls. Our secondary objective was to analyze factors possibly moderating heterogeneity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coordinated Progression through Two Subtranscriptomes Underlies the Tachyzoite Cycle of Toxoplasma gondii

              Background Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. Methodology/Principal Findings Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. Conclusion/Significance Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                8 September 2015
                Sep-Oct 2015
                : 6
                : 5
                : e01155-15
                Affiliations
                [a ]Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
                [b ]Department of Biomedical Engineering, University of Kentucky College of Engineering, Lexington, Kentucky, USA
                Author notes
                Address correspondence to Anthony P. Sinai, sinai@ 123456uky.edu .
                [*]

                Present address: Elizabeth Watts, Coverdell Center for Biomedical and Health Sciences, University of Georgia, Athens, Georgia, USA; Becca Eller, Nestle, USA, Mt. Sterling, Kentucky, USA.

                Editor Louis M. Weiss, Albert Einstein College of Medicine

                Article
                mBio01155-15
                10.1128/mBio.01155-15
                4600105
                26350965
                ba536e6a-cdb5-45a5-b661-1367f63fd051
                Copyright © 2015 Watts et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 July 2015
                : 7 August 2015
                Page count
                supplementary-material: 10, Figures: 11, Tables: 1, Equations: 0, References: 90, Pages: 24, Words: 22463
                Categories
                Research Article
                Custom metadata
                September/October 2015

                Life sciences
                Life sciences

                Comments

                Comment on this article