27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent results on the optical properties of mono- and few-layers of semiconducting transition metal dichalcogenides are reviewed. Experimental observations are presented and discussed in the frame of existing models, highlighting the limits of our understanding in this emerging field of research. We first introduce the representative band structure of these systems and their interband optical transitions. The effect of an external magnetic field is then considered to discuss Zeeman spectroscopy and optical pumping experiments, both revealing phenomena related to the valley degree of freedom. Finally, we discuss the observation of single photon emitters in different types of layered materials, including wide band gap hexagonal boron nitride. While going through these topics, we try to focus on open questions and on experimental observations, which do not yet have a clear explanation.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Observation of tightly bound trions in monolayer MoS2

            Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS2 is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on-off ratio exceeding 10^8 in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in doped monolayer MoS2 of tightly bound negative trions, a quasi-particle composed of two electrons and a hole. These quasi-particles, which can be created with valley and spin polarized holes, have no analogue in other semiconducting materials. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up new avenues both for fundamental studies of many-body interactions and for opto-electronic and valleytronic applications in 2D atomic crystals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

              Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.
                Bookmark

                Author and article information

                Journal
                2016-12-18
                Article
                1612.05879
                309a4602-7ecb-4610-82e7-e0483f48976e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                41 pages, 18 figures
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article