18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Importance of Mechanical Forces for in vitro Endothelial Cell Biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Every step of the way: integrins in cancer progression and metastasis

          Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms and regulation of endothelial VEGF receptor signalling.

            Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Photodegradable hydrogels for dynamic tuning of physical and chemical properties.

              We report a strategy to create photodegradable poly(ethylene glycol)-based hydrogels through rapid polymerization of cytocompatible macromers for remote manipulation of gel properties in situ. Postgelation control of the gel properties was demonstrated to introduce temporal changes, creation of arbitrarily shaped features, and on-demand pendant functionality release. Channels photodegraded within a hydrogel containing encapsulated cells allow cell migration. Temporal variation of the biochemical gel composition was used to influence chondrogenic differentiation of encapsulated stem cells. Photodegradable gels that allow real-time manipulation of material properties or chemistry provide dynamic environments with the scope to answer fundamental questions about material regulation of live cell function and may affect an array of applications from design of drug delivery vehicles to tissue engineering systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                18 June 2020
                2020
                : 11
                : 684
                Affiliations
                [1] 1Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD, Australia
                [2] 2Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
                Author notes

                Edited by: Stephan Huveneers, Amsterdam University Medical Center (UMC), Netherlands

                Reviewed by: Julian Albarran Juarez, Aarhus University, Denmark; Elizabeth Anne Vincent Jones, KU Leuven, Belgium

                *Correspondence: Emma Gordon, e.gordon@ 123456imb.uq.edu.au

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.00684
                7314997
                32625119
                2ec51bd0-a511-4670-a861-638fc667c546
                Copyright © 2020 Gordon, Schimmel and Frye.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 February 2020
                : 26 May 2020
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 235, Pages: 20, Words: 0
                Funding
                Funded by: H2020 Marie Skłodowska-Curie Actions 10.13039/100010665
                Award ID: 840189
                Funded by: National Health and Medical Research Council 10.13039/501100000925
                Award ID: APP1158002
                Categories
                Physiology
                Review

                Anatomy & Physiology
                blood endothelial cells,lymphatic endothelial cells,mechanotransduction,fluid shear stress,matrix stiffness,ecm - extracellular matrix,in vitro model culture system,(lymph-)angiogenesis

                Comments

                Comment on this article