20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Wildmeat consumption and zoonotic spillover: contextualising disease emergence and policy responses

      review-article
      , MPhil a , * , , Prof, PhD a
      The Lancet. Planetary Health
      The Author(s). Published by Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zoonotic diseases are estimated to constitute 75% of all emerging infectious diseases, of which more than 70% come from wild species. The potential threat of zoonotic spillover from the consumption of wildmeat has been the subject of policy and media attention, especially in the context of the COVID-19 pandemic; however, little is known about the actual conditions that contribute to the risk of spillover and associated disease transmission. In this Review, we compile existing evidence from available literature on the conditions of spillover associated with wildmeat consumption, including the types of wild animal and disease, modes of transmission, and the conditions in which spillover is thought to have occurred. We suggest that stronger understanding of the context of spillover from wildmeat is needed to enable more targeted and effective policy responses that reduce the risk of future pandemics of zoonotic origin. Such interventions could also lead to the avoidance of unintended adverse consequences for human communities that rely on wild produce, including wildmeat, as sources of dietary protein, fat, and micronutrients.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global trends in emerging infectious diseases

            The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for human disease emergence.

              A comprehensive literature review identifies 1415 species of infectious organism known to be pathogenic to humans, including 217 viruses and prions, 538 bacteria and rickettsia, 307 fungi, 66 protozoa and 287 helminths. Out of these, 868 (61%) are zoonotic, that is, they can be transmitted between humans and animals, and 175 pathogenic species are associated with diseases considered to be 'emerging'. We test the hypothesis that zoonotic pathogens are more likely to be associated with emerging diseases than non-emerging ones. Out of the emerging pathogens, 132 (75%) are zoonotic, and overall, zoonotic pathogens are twice as likely to be associated with emerging diseases than non-zoonotic pathogens. However, the result varies among taxa, with protozoa and viruses particularly likely to emerge, and helminths particularly unlikely to do so, irrespective of their zoonotic status. No association between transmission route and emergence was found. This study represents the first quantitative analysis identifying risk factors for human disease emergence.
                Bookmark

                Author and article information

                Journal
                Lancet Planet Health
                Lancet Planet Health
                The Lancet. Planetary Health
                The Author(s). Published by Elsevier Ltd.
                2542-5196
                9 May 2022
                May 2022
                9 May 2022
                : 6
                : 5
                : e439-e448
                Affiliations
                [a ]Department of Geography, University of Cambridge, Cambridge, UK
                Author notes
                [* ]Correspondence to: Ms Charlotte Milbank, Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
                Article
                S2542-5196(22)00064-X
                10.1016/S2542-5196(22)00064-X
                9084621
                35550083
                2c1dc571-c7ae-4a99-8b6d-3aaf08b53718
                © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Review

                Comments

                Comment on this article