3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overview of game meat utilisation challenges and opportunities: A European perspective

      , , ,
      Meat Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d1158698e99">Re-wilding and similar initiatives have resulted in an increase in wildlife suitable for human consumption in Europe. However, game meat production and consumption present several challenges, including infectious diseases which pose risks to livestock, processers, and consumers. This review provides insights into the infectious diseases and toxic contaminants associated with game meat. The effect of killing method on the meat quality is also discussed and means of improving the meat quality of game meat is elucidated. The use of different food safety systems that could be applied to provide safe meat is reported. The importance of collaborative multi-sector approaches is emphasized, to generate and distribute knowledge and implement One Health strategies that ensure the safe, traceable, sustainable, and professional development of commercial game meat supply chains. </p>

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 infection in free-ranging white-tailed deer

          Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SARS-CoV-2 exposure in wild white-tailed deer ( Odocoileus virginianus )

            Widespread human SARS-CoV-2 infections combined with human–wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa

              The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >>1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10−4 implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10−4). These carcinogenic risk values were both higher than acceptable values.
                Bookmark

                Author and article information

                Journal
                Meat Science
                Meat Science
                Elsevier BV
                03091740
                October 2023
                October 2023
                : 204
                : 109284
                Article
                10.1016/j.meatsci.2023.109284
                37480669
                fdba6a35-d3b0-4205-81ba-dd99201d7ccb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article