33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of phosphodiesterase 4 modulates cytokine induction from toll like receptor activated, but not rhinovirus infected, primary human airway smooth muscle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Virus-induced exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are a significant health burden and occur even in those receiving the best current therapies. Rhinovirus (RV) infections are responsible for half of all COPD exacerbations. The mechanism by which exacerbations occur remains undefined, however it is likely to be due to virus-induced inflammation. Given that phophodiesterase 4 (PDE 4) inhibitors have an anti-inflammatory effect in patients with COPD they present a potential therapy prior to, and during, these exacerbations.

          Methods

          In the present study we investigated whether the PDE 4 inhibitor piclamilast (10 -6 M) could alter RV or viral mimetic (5 μg/mL of imiquimod or poly I:C) induced inflammation and RV replication in primary human airway smooth muscle cells (ASMC) and bronchial epithelial cells (HBEC). The mediators IL-6, IL-8, prostaglandin E 2 and cAMP production were assayed by ELISA and RV replication was assayed by viral titration.

          Results

          We found that in ASMCs the TLR3 agonist poly I:C induced IL-8 release was reduced while induced IL-6 release by the TLR7/8 agonist imiquimod was further increased by the presence of piclamilast. However, in RV infected ASMCs, virus replication and induced mediator release were unaltered by piclamilast, as was also found in HBECs. The novel findings of this study reveal that although PDE inhibitors may not influence RV-induced cytokine production in ASMCs and replication in either ASMCs or HBECs, they have the capacity to be anti-inflammatory during TLR activation by modulating the induction of these chemotactic cytokines.

          Conclusion

          By extrapolating our in vitro findings to exacerbations of COPD in vivo this suggests that PDE 4 inhibitors may have beneficial anti-inflammatory properties when patients are infected with bacteria or viruses other than RV.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus

          Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects. Viral RNA expression and late virus release into supernatant was increased 50- and 7-fold, respectively in asthmatic cells compared with healthy controls. Virus infection induced late cell lysis in asthmatic cells but not in normal cells. Examination of the early cellular response to infection revealed impairment of virus induced caspase 3/7 activity and of apoptotic responses in the asthmatic cultures. Inhibition of apoptosis in normal cultures resulted in enhanced viral yield, comparable to that seen in infected asthmatic cultures. Examination of early innate immune responses revealed profound impairment of virus-induced interferon-β mRNA expression in asthmatic cultures and they produced >2.5 times less interferon-β protein. In infected asthmatic cells, exogenous interferon-β induced apoptosis and reduced virus replication, demonstrating a causal link between deficient interferon-β, impaired apoptosis and increased virus replication. These data suggest a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of deficient type III interferon-lambda production in asthma exacerbations.

            Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-lambdas by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Viruses and bacteria in the etiology of the common cold.

              Two hundred young adults with common colds were studied during a 10-month period. Virus culture, antigen detection, PCR, and serology with paired samples were used to identify the infection. Viral etiology was established for 138 of the 200 patients (69%). Rhinoviruses were detected in 105 patients, coronavirus OC43 or 229E infection was detected in 17, influenza A or B virus was detected in 12, and single infections with parainfluenza virus, respiratory syncytial virus, adenovirus, and enterovirus were found in 14 patients. Evidence for bacterial infection was found in seven patients. Four patients had a rise in antibodies against Chlamydia pneumoniae, one had a rise in antibodies against Haemophilus influenzae, one had a rise in antibodies against Streptococcus pneumoniae, and one had immunoglobulin M antibodies against Mycoplasma pneumoniae. The results show that although approximately 50% of episodes of the common cold were caused by rhinoviruses, the etiology can vary depending on the epidemiological situation with regard to circulating viruses. Bacterial infections were rare, supporting the concept that the common cold is almost exclusively a viral disease.
                Bookmark

                Author and article information

                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2013
                15 November 2013
                : 14
                : 1
                : 127
                Affiliations
                [1 ]Woolcock Institute of Medical Research, Sydney, Australia
                [2 ]Respiratory Research Group, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia
                [3 ]Department of Thoracic Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
                Article
                1465-9921-14-127
                10.1186/1465-9921-14-127
                3832400
                2b52d16d-a019-41fd-ad63-07a1bc919fda
                Copyright © 2013 Van Ly et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 August 2013
                : 11 November 2013
                Categories
                Research

                Respiratory medicine
                piclamilast,rhinovirus,poly i: c,formoterol,imiquimod,phosphodiesterase 4,copd,airway smooth muscle

                Comments

                Comment on this article